13 resultados para Música. Mujer. Producción de sentido. Forró electrónico. Folkcomunicación.
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Se analizan resultados de un estudio con alumnos de secundaria, en el que se utiliza un modelo virtual de la balanza para la enseñanza de la resolución de ecuaciones de primer grado. A diferencia del modelo concreto o diagramático, el modelo virtual es dinámico e interactivo y en su versión ampliada (balanza con poleas) incluye la representación y resolución de ecuaciones con sustracción de términos. Los resultados indican que al final del estudio, los alumnos logran extender el método algebraico de resolución a una variedad amplia de modalidades de ecuaciones y que de manera espontánea infieren el método de transposición de términos. Con el fin de investigar los procesos de producción de sentido y de construcción de significado, se adopta una perspectiva semiótica que incorpora al análisis las producciones sígnicas de los estudiantes, como parte de la interacción entre los sistemas de signos algebraico, aritmético y el sistema de signos del modelo.
Resumo:
El presente trabajo profudiza sobre las nociones de nota musical e intervalo musical en sentido geométrico y aritmético. El concepto aritmético de nota musical aporta a los alumnos la idea de que una misma cosa (una nota) se puede mostrar con distintas apariencias(diferentes frecuencias), el concepto de nota musical se expone a partir del movimiento de dos móviles con movimiento uniforme. A partir de estos problemas dinámicos se da un procedimiento geométrico para determinar cuatro puntos en cuaterna armónica. Esta construcción proporciona un método para dividir armónicamente el intervalo de una octava mediante las notas tercera y quinta y permite construir acordes perfectos y comprender la razón de la diferente separación entre los trastes de una guitarra.
Resumo:
Este documento se usa el constructo teórico Humans-with-Media para analizar una situación construida con el software Geogebra. La situación muestra un posible entendimiento de la función derivada a partir del reconocimiento de la “función tasa de variación”.
Resumo:
Analizamos el sentido estructural que estudiantes de entre 16 y18 años de edad ponen de manifiesto al trabajar con expresiones algebraicas, en el contexto de la simplificación de fracciones algebraicas que involucran las igualdades notables cuadrado de la suma, cuadrado de la diferencia, diferencia de cuadrados y propiedad distributiva/factor común. La identificación y clasificación de las estrategias empleadas por los estudiantes nos permite diferenciar tres modos de actuación que evidencian diferentes niveles de sentido estructural. Este análisis nos permite distinguir un amplio espectro de niveles de sentido estructural y avanzar en la comprensión del constructo sentido estructural que informa sobre las habilidades necesarias para hacer un uso eficiente de las técnicas algebraicas en tareas escolares.
Resumo:
Presentamos parte de un trabajo de exploración en la didáctica de la matemática, en el cual desarrollamos un tema de gran importancia, como es la proporcionalidad, desde otras áreas, que si bien tienen este concepto como elemento fundamental, no han sido aprovechadas ni puestas en evidencia suficientemente dentro del campo de la enseñanza de la matemática, nos referimos a la música y al dibujo. También se toma la vida cotidiana como un campo de aplicación natural del concepto de proporcionalidad.
Resumo:
El módulo 8 busca proporcionar las ideas, herramientas y técnicas para producir el informe final de la unidad didáctica. Para producir el informe tendremos que establecer su contenido y la forma como lo vamos a estructurar en el documento. Tendremos que redactar ese contenido y adaptarlo a la forma que se requiere en la comunidad de Educación Matemática.
Resumo:
A decir de algunos especialistas en matemáticas y matemática educativa, lograr que los estudiantes tengan un entendimiento profundo del cálculo y con ello, contribuir al desarrollo de futuros ingenieros, matemáticos y científicos en general, precisa del favorecimiento de formas de pensamiento y lenguaje de naturaleza variacional, asociados al concepto función. En este sentido, en el presente escrito se describen algunas ideas y referentes teóricos que motivaron y guiaron la producción de un cuaderno de estudio sobre dicho concepto, como es el caso de la modelación matemática en tanto actividad y práctica matemática.
Resumo:
Las distancias entre saberes de la vida diaria, los escolares y los eruditos, afincan sus raíces en matrices de sentido de epistemes propias. Tal ocurre para las nociones de velocidad y tiempo de la matemática del cambio. Una didáctica crítica es desafiada a deconstruirlos, desentrañando su presencia en el sentido común del estudiantado y en los saberes escolares de los que debe apropiarse éste, de modo de proporcionar antecedentes para diseñar y validar puentes de diálogo entre estos cuerpos de saberes. Para colaborar en esta línea, se presentan matrices de sentido para las nociones de velocidad y de tiempo obtenidas en investigaciones de la Matemática del Cambio.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
En ese trabajo se analizan las respuestas de estudiantes de secundaria a tareas numéricas susceptibles de resolverse haciendo uso de sentido numérico. Se analizan las estrategias y los razonamientos de sentido numérico frente a los procedimientos algorítmicos y de aplicación de reglas. Se observa cómo el uso del sentido numérico queda condicionado por dificultades y errores en conceptos numéricos propios de niveles básicos y por el tipo de actividad. Las tareas con enunciados semejantes a los tradicionales presentan mayor aparición de reglas y algoritmos.
Resumo:
Este artículo presenta algunos resultados de investigación, que se viene desarrollando bajo el método de estudio de caso en una institución rural de la Región de Urabá, con el propósito de analizar un proceso de modelación matemática. Esto fue posible, al permitirles a los estudiantes generar modelos lineales desde una situación en el contexto del cultivo plátano. Y al final, se presentan algunos resultados, resaltando el papel del contexto cotidiano incluido en la enseñanza de las Matemáticas, para mediar el uso de las letras como variables, en correspondencia entre el contexto cotidiano y las matemáticas.
Resumo:
Esta sección encontrará sus lectores más inmediatos entre las personas vinculadas al mundo académico y matemático, pero lo ideal sería que estas páginas pudieran llegar más allá. Tú, lector, podrías ser quien concretara el sentido educativo de la sección invitando a tus alumnos, familiares y amigos a relacionar lo que ven con las matemáticas. Por el nivel de matemáticas necesario no deberían preocuparse, ya que se restringirá al de la E.S.O. y el Bachillerato. Todo lo que vemos son imágenes. Pensando en ellas buscamos en nuestro conocimiento modos de interpretarlas y entenderlas. Ahora se propone la reflexión sobre imágenes no con la intención de efectuar una descripción matemática gratuita de lo que se ve mediante la aplicación de conocimiento matemático, sino más bien al contrario: observar cómo las matemáticas pueden resultar imprescindibles para comprender lo que vemos. La idea es desvelar el trasfondo matemático subyacente en las imágenes, de ahí el título de la sección: imátgenes. Una iMATgen será una imagen portadora de matemáticas esenciales para su comprensión. Nada impide realizar un juego de palabras con un cariz biológico. Puesto que ante una misma imagen dos personas pueden dar interpretaciones diferentes, una imagen puede admitir dos iMÁTgenes distintas. Por eso ofrecemos la posibilidad de participar en la sección mediante el correo electrónico: "imatgenes.suma@fespm.org". Cualquier comentario, sugerencia o ayuda será bien recibida. Muchas gracias. ¡Que lo veáis bien!
Resumo:
Siempre me ha interesado la historia de las matemáticas cuando la resolución de problemas ha sido su columna vertebral. Ahora que estamos en el 2000, tenemos muy presente aquella famosa lista de 23 problemas dados por Hilbert hace 100 años.