7 resultados para Luis XV, Rey de Francia, 1710-1774
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
A finales del siglo XVIII, en Europa el conocimiento científico se había desarrollado extraordinariamente. Surgen los nombres de Lavoisier, Ritcher, Coulomb y Celsius entre otros muchos. Se enuncian leyes en química y física; junto a ellas también florece la matemática de la mano de Euler, Lagrange, D«Alambert, Monge, por citar sólo unos cuantos. Mientras tanto, el atraso de las matemáticas españolas se debía, entre otras causas, al pobre estado en que se encontraban las universidades: aún de tipo medieval y de carácter eclesiástico. Esto lo evidencia Fray Benito Jerónimo Feijoo en la carta titulada Causas del atraso que se padece en España en orden a las ciencias naturales, y el Marqués de la Ensenada quien, en 1748, se lo expresa al rey Fernando VI. Las deficiencias de las universidades tenían que ver con la enseñanza memorística, textos anticuados e interés primordial por disciplinas como derecho, teología y filosofía en detrimento de las matemáticas y las ciencias.
Resumo:
Esta investigación trata sobre las características de los ítems elaborados por las Comunidades Autónomas españolas en el curso académico 2008-2009 para atender la evaluación diagnóstica de la competencia matemática básica de los estudiantes de 2o de ESO. Se centra en su adecuación al modelo de evaluación de la competencia matemática establecido por el estudio PISA de la OECD, según considera el Ministerio de Educación y Ciencia. El estudio está basado en el análisis de los ítems incluidos en una muestra de cinco pruebas de diagnóstico cuyos resultados identifican sesgos y debilidades. Se concluye que para cumplir con el grado de ajuste adecuado a las evaluaciones PISA, es necesario que las Comunidades Autónomas revalúen el diseño de las pruebas a la luz de las variables de tarea definidas en su caracterización.
Resumo:
En este trabajo presentamos las posibilidades del análisis secuencial y la técnica de coordenadas polares para describir y analizar el proceso de resolución, por parejas, de un problema de optimización mediado por una i-actividad. Iniciamos el trabajo con algunos antecedentes teóricos y la descripción de las técnicas del análisis secuencial y de coordenadas polares. Finalmente ejemplificamos y describimos el potencial de estas técnicas.
Resumo:
Con el cambio de formato de la revista NÚMEROS la sección que hasta ahora manteníamos puede proseguir o no, dependiendo de la nueva dirección de la misma y del gusto de los lectores. En la espera de esa decisión queremos completar el último artículo dando, como es costumbre, las soluciones de los problemas del número anterior.
Resumo:
El ajedrez puede constituir un excelente recurso didáctico en el aula de matemáticas. El presente trabajo trata sobre algunas de las conexiones que se pueden establecer entre estas dos disciplinas, y sobre la posibilidad de plantear problemas matemáticos tomando como soporte el tablero y las piezas de ajedrez. Los contenidos de los problemas son muy variados, manejando diversas cuestiones -algebraicas, combinatorias, geométricas, cálculo de probabilidades, de lógica, etc.-, que resultan especialmente motivadoras por el carácter lúdico y manipulativo que posee el juego de los 64 escaques.
Resumo:
Muchas veces en clase he trazado de extremo a extremo de la pizarra una línea blanca a la que he puesto por nombre R. Este gesto invita a pensar que R, el conjunto de los números reales, se parece mucho a una fila india de puntos muy apretados. Pero los matemáticos sabemos que no es así, pues hay infinitos de diversa índole. El infinito del libro de arena borgiano es numerable, el infinito real no. El continuo real no es ni debe imaginarse como una hilera muy tupida de puntos suspensivos, sino más bien como... ya se verá.
Resumo:
Se analizan algunos aspectos de la vida de José Luis Massera, tanto académicos como políticos.