14 resultados para Libro para niños
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La atención a la diversidad escolar es uno de los temas de creciente interés en nuestro país. Particularmente, la falta de investigación y de reconocimiento gubernamental de los niños con algún talento especial ha propiciado la incertidumbre en el aula. Tal situación tiene como consecuencia la necesidad de estudios de contexto que permitan la identificación y el tratamiento escolar de esta población. Este trabajo tiene como finalidad presentar un estado del arte acerca de algunas investigaciones y proyectos llevados a cabo en torno a estos niños. Todo esto, con la finalidad de poder encontrar aquellas características que nos permitan identificar a un niño mexicano con talento en matemáticas.
Resumo:
Este estudio se centra en el diseño e implementación de tareas que permitan a los futuros profesores identificar el talento matemático de los alumnos, al mismo tiempo que potencian en ellos su desarrollo. El trabajo fue realizado con estudiantes de entre 7 y 11 años, que participaron en cursos extraordinarios de matemática. La tarea se basó en la teoría de situaciones de Brosseau, con algunos conceptos de combinatoria y con movimientos en el espacio. En su desarrollo se utilizó material concreto como medio facilitador hacia la abstracción. Los futuros profesores debían observar la actividad de los alumnos y registrar todos los acontencimientos que, bajo su perspectiva, intervenían el la resolución de la tarea. En los resultados mostramos la potencialidad del trabajo desarrollado, cuáles fueron las características más destacadas que se potenciaron en los alumnos y cuáles fueron las identificadas por los futuros profesores.
Resumo:
Esta experiencia de aula hace alusión a un proceso seguido por cuatro estudiantes para profesor dentro del espacio de formación de práctica docente, en el que todo inicia como un reto de ocho días para abordar la enseñanza de la geometría y del pensamiento espacial en estudiantes de segundo de primaria, desde la propuesta de Linda Dickson (1991), la cual centra su atención al estudio de los objetos tridimensionales,analizando sus propiedades y características físicas-visuales para proporcionar el camino hacia el aprendizaje de las representaciones bidimensionales de los mismos; ésta metodología de enseñanza enmarcada en una situación fundamental desde Brousseau (1986), llamada “viaje alrededor del mundo geométrico en ocho días” fue lo que resultó ser una experiencia inolvidable y sin duda de maravillosos aprendizajes.
Resumo:
La presente investigación, de orden cualitativo y en curso, es parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura del “Isomorfismo de Medidas” propuesta por Vergnaud (1995). La propuesta teórica se basa en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico; en la segunda fase se diseñara y aplicará el modelo de enseñanza centrando el interés en la resolución de problemas con isomorfismo de medidas. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vi
Resumo:
Presentamos una reflexión basada en la diversidad escolar como una problemática de los sistemas educativos actuales. A modo de particularizar y evidenciar nuestra postura, elaboramos una discusión alrededor de tres perspectivas del problema. Resaltamos el rol de la matemática en cada una de ellas y la necesidad de realizar investigaciones al interior de cada una de las poblaciones descritas. Nos interesa reflexionar sobre el rol del discurso matemático escolar en contraste con la diversidad escolar, bajo la hipótesis de que el primero no considera las características de los estudiantes, contexto, cultura, factores que la propician. Referiremos a dicha diversidad escolar, tras el análisis de tres comunidades desatendidas por el sistema educativo: los(as) niños(as) con talento cuyas mismas capacidades superiores los aíslan de una educación diferenciada y por el otro, los(as) niños(as) Sordos(as) y niños(as) indígenas, cuya condición física o socioeconómica los determina con rezago educativo.
Resumo:
La presente investigación, de orden cualitativo y en curso, forma parte de una tesis de maestría en México respaldada por el CONACYT. El interés es identificar las dificultades de estudiantes del segundo ciclo de primaria (8-9 años) al resolver problemas multiplicativos según la estructura propuesta por Vergnaud (1995) en el “Isomorfismo de Medidas”. La propuesta teórica es basada en el “Modelo Teórico Local” (Filloy, 1999). En su primera fase, de dos, se realiza la revisión de la propuesta institucional (Secretaria de Educación Pública, [SEP] 1993), bibliografía complementaria respecto a la enseñanza de problemas multiplicativos, y el diseño de pruebas y ejercicios de diagnóstico. Como resultados preliminares, se tiene que los niños muestran modos de resolución de problemas deficientes, debido a que en la propuesta oficial no se tratan problemas relacionados con el “Isomorfismo de medidas”. Los niños presentan dificultades al resolver problemas de la vida cotidiana planteados en el aula.
Resumo:
El desarrollo de las competencias básicas científicas, matemáticas y tecnológicas son factibles cuando sus contenidos, conceptos y procesos; entre otros, se abordan desde una comprensión social y cuando se emplea un marco interdisciplinario para dar respuesta a los problemas. Los proyectos escolares es una estrategia para el aprendizaje de la ciencia, matemática y la Tecnología ya que potencializa en alumnas y alumnos la adquisición de una visión integrada de los fenómenos naturales y la comprensión de las diferentes teorías y modelos desde una dimensión sociocultural; sobre los que se van construyendo el conocimiento. Los objetivos del presente trabajo son (a) Promover la utilización de los proyectos escolares como una coestrategia para el desarrollo de habilidades cognitivas científicas y matemáticas y (b) Fortalecer el abordaje metodológico, para la iniciación de los niños y jóvenes en la investigación y formulación de proyectos de una forma interdisciplinaria.
Resumo:
Los procedimientos, gráficos, operaciones y procesos en las matemáticas hacen necesaria la implementación de recursos didácticos que permitan facilitar el aprendizaje de los contenidos de ella. Por esto son indispensables en la enseñanza de las matemáticas como instrumentos de apoyo que favorecen el proceso de matematización y representación de ideas matemáticas. Esto es una gran dificultad para el niño con discapacidad visual ya que en la educación matemática hacen falta materiales didácticos adaptados lo cuales mejoren el ritmo de trabajo y rendimiento a la hora de aprender haciendo uso de una Didáctica Especial de la Matemática para ciegos que permita una adecuación de materiales pedagógicos e instrumental de trabajo para esta población.
Resumo:
Los profesores tenemos que ser conscientes de que establecer la labor diaria del aula (lo que quiere decir, determinar claramente que queremos que nuestros alumnos aprendan y mediante qué actividades intentaremos que se consigue este aprendizaje) no se puede dejar al simple uso del libro de texto, y aunque el uso de este material sigue siendo prioritario en las aulas, es importante que no sea el único referente curricular. Los materiales que aquí se presentan pueden ser útiles como un primer paso para entrar en la geometría en el segundo ciclo de la ESO. Se plantea el estudio de las figuras planas como una investigación que le alumno realiza a partir de las premisas mínimas por parte del profesor. En este sentido se hace mas patente que nunca la frase: una clase de geometría sólo está viva si los alumnos hacen geometría.
Resumo:
Muchas veces en clase he trazado de extremo a extremo de la pizarra una línea blanca a la que he puesto por nombre R. Este gesto invita a pensar que R, el conjunto de los números reales, se parece mucho a una fila india de puntos muy apretados. Pero los matemáticos sabemos que no es así, pues hay infinitos de diversa índole. El infinito del libro de arena borgiano es numerable, el infinito real no. El continuo real no es ni debe imaginarse como una hilera muy tupida de puntos suspensivos, sino más bien como... ya se verá.
Resumo:
El título corresponde a una cita de M. Morse que elogiaba de esa forma la aparición del libro el año 1941. En la contraportada de la edición española se recogen unas palabras de A. Einstein acerca de esta obra: «Una acertada exposición de los conceptos y métodos funda- mentales de la matemática. Constituye una introducción que puede leer sin dificultad el profano, en tanto que al iniciado en matemáticas le ofrece un panorama general de sus métodos y principios básicos». No son las únicas personalidades que hablan de ¿Qué es la matemática? en términos elogiosos. El Courant/Robbíns, como se le suele nombrar coloquialmente, se ha convertido en poco tiempo en un clásico entre las obras de introducción al pensamiento y métodos de las matemáticas.
Resumo:
Este libro es un clásico de largo recorrido, con muchas ediciones, de las que hemos indicado tres representativas: lo 1° por razones obvias, la 14° porque es la última compuesta en vida del autor; que falleció un año después, y la 5° por ser la inmediata anterior a la guerra civil.
Resumo:
El desarrollo de las habilidades para un conocimiento estadístico necesario es posible desarrollarlo y fortalecerlo por medio de variados recursos didácticos dispuestos para la enseñanza y aprendizaje. Dentro de los recursos disponibles es el texto de matemática el más utilizado por profesores y estudiantes. El texto debe entregar herramientas que permita a los estudiantes desarrollar una alfabetización matemática, realizando una focalización más explícita en los conocimientos, comprensión y habilidades requeridas para funcionar efectivamente en la vida diaria (PISA Chile, 2009).
Resumo:
La propuesta curricular de las matemáticas de la comunidad Valenciana sitúa la Probabilidad y la Estadística desde los primeros cursos de la Enseñanza Obligatoria, ésto que a primera vista puede parecer una exageración se muestra como posible e interesante siempre que quede entendido el sentido de la propuesta. No se trata de trasladar muchos años hacia abajo lo que hoy casi ni se da en la enseñanza obligatoria, la probabilidad como parte organizada de las matemáticas, se trata de aprovechar el sentido que ya tiene en estas edades las nociones de suerte y juego justo para ampliar y enriquecer su visión del Al mismo tiempo el azar introduce un contexto muy ameno y rico en situaciones numéricas, situaciones en las que para determinar un ganador necesitan de trasformaciones entre los números que obtienen, recogen y organizan, fundamentalmente suma, resta y multiplicación.