6 resultados para Leyes universales
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este artículo se expone parte de los productos de la investigación denominada “Habilidades matemáticas y formación de profesores de educación secundaria”, 98-SIBEJ- 03024 y de “Programa de capacitación y actualización para profesores de matemáticas de nivel medio superior en Guerrero”, GUE-2002-C01-4725. Con estos productos y experiencias se estructura un curso corto realizado en Relme 18. Postulamos que el profesor de matemáticas tiene el compromiso de contribuir a la formación matemática de los alumnos, entendida como la que los convierte en ciudadanos cultos, constructivos, comprometidos y capaces de razonar, OCDE (2000). De modo que en este trabajo se analizan habilidades y actividades matemáticas encaminadas a la construcción de un modelo de capacitación permanente de profesores.
Resumo:
A finales del siglo XVIII, en Europa el conocimiento científico se había desarrollado extraordinariamente. Surgen los nombres de Lavoisier, Ritcher, Coulomb y Celsius entre otros muchos. Se enuncian leyes en química y física; junto a ellas también florece la matemática de la mano de Euler, Lagrange, D«Alambert, Monge, por citar sólo unos cuantos. Mientras tanto, el atraso de las matemáticas españolas se debía, entre otras causas, al pobre estado en que se encontraban las universidades: aún de tipo medieval y de carácter eclesiástico. Esto lo evidencia Fray Benito Jerónimo Feijoo en la carta titulada Causas del atraso que se padece en España en orden a las ciencias naturales, y el Marqués de la Ensenada quien, en 1748, se lo expresa al rey Fernando VI. Las deficiencias de las universidades tenían que ver con la enseñanza memorística, textos anticuados e interés primordial por disciplinas como derecho, teología y filosofía en detrimento de las matemáticas y las ciencias.
Resumo:
Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.
Resumo:
Uno de los puntos débiles del actual currículo de secundaria en Matemáticas es la enseñanza de la dispersión. Son varios los motivos que ocasionan esta debilidad. En este trabajo se analizarán brevemente algunas investigaciones que nos ayudarán en el aula y en la investigación a mejorar la comprensión de un concepto complejo como es la dispersión. Se indica la importancia de la dispersión en Estadística. Se comprueba que el concepto de dispersión no se incluye en los curriculos oficiales, se analiza el significado de la noción de dispersión y se ejemplifica el desarrollo histórico mediante el devenir a lo largo de la historia de las leyes del error. Finalizamos con unas conclusiones válidas para la enseñanza y la investigación.
Resumo:
Para conocer un todo no es necesario el conocimiento exhaustivo de cada uno de los elementos que lo componen. Basta con determinar sus elementos fundamentales y saber qué leyes determinan la relación entre ellos y los demás. Solamente un todo pequeño (finito) puede conocerse por completo, elemento a elemento. Los todos más vastos (infinitos), jamás. Kublai se da cuenta de que no hay otro modo de conocer conjuntos tan grandes. El conjunto de los números naturales se conoce a partir de un elemento (uno) y de una ley de formación (uno más uno: dos). Un espacio vectorial se conoce a partir de los vectores de su base y del modo en que operan (suman y multiplican) entre ellos y con los escalares de un cuerpo K.
Resumo:
Existen medios de comunicación universales como la música o el arte. La notación de las matemáticas también goza, afortunadamente, de cierta universalidad. Una parte de las matemáticas, la teoría de grafos, se ha mostrado, en los últimos tiempos, como una notación muy útil y unificadora en diversas disciplinas.