12 resultados para Lector
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.
Resumo:
El presente trabajo no pretende ser un estudio exhaustivo del método inductivo, sino más bien una exposición divulgativa de dicho método en el que se presentan una serie de ejemplos ilustrativos y curiosidades relacionadas con la inducción. He intentado que los ejemplos tengan una cierta componente lúdica, planteando varios como un reto o desafío al lector, huyendo en todo caso de ejemplos aburridos o en exceso académicos.
Resumo:
En este artículo se estudia una familia de juegos infinitos y se caracteriza, en dos sentidos diferentes, cuándo se da el equilibrio. El trabajo está escrito para ser aprovechado directamente en el aula, por eso se realiza el estudio desde casos sencillos y particulares y se conduce al lector hacia una primera generalización. Obtenida la primera solución general, se discute su aplicabilidad real y se propone otra generalización, diferente a la primera, en consonancia con la realidad. Esta segunda generalización requiere de la introducción del concepto de apuesta y de la caracterización general de juego justo o equilibrado.
Resumo:
La primera sorpresa al leer el libro es el modo epistolar en que está escrito. La protagonista escribe cartas a una hermana suya, y en ellas le va desgranando la trama en la que se va viendo inmersa. Esta forma singular de escritura, al principio puede generar una cierta incomodidad en el lector, sobre todo si pensamos en nuestros alumnos y alumnas adolescentes, pero una vez que la acción va tomando cuerpo esa sensación desaparece.
Resumo:
En esta sección vamos a proponer que el cine entre en la clase de matemáticas en secundaria. No se tratará sólo de entretener a los alumnos, aunque también (¡ojalá lo consiguiéramos más a menudo!), sino de aprovechar la fascinación de la pantalla para sembrar en sus mentes una idea esencial: las Matemáticas no son algo muerto, limitado a una clase y unos libros, sino que están en nuestro mundo, jugando un papel importante, tanto en la historia colectiva como en muchas historias personales. Pero hay que saber verlas, como también hay que saber ver el cine. El cine es la gran ilusión que en la oscuridad de una sala, que puede ser el aula, suplanta a la realidad. En clase, cada escena precisará un análisis posterior, una puesta en común que, además de enseñar a ver, establezca un nexo verosímil entre esa ilusión y la realidad verdadera. En cada artículo se harán reflexiones sobre el alcance y validez de la propuesta. Después, se propondrán diversas escenas, concretando los niveles y temas para su uso didáctico. Seguramente despierten la memoria cinematográfica del lector. SUMA podría ser receptora de las reseñas que permitan la localización de otras escenas por cualquier profesor interesado en la propuesta y componer con ellas un listado útil.
Resumo:
Esta sección encontrará sus lectores más inmediatos entre las personas vinculadas al mundo académico y matemático, pero lo ideal sería que estas páginas pudieran llegar más allá. Tú, lector, podrías ser quien concretara el sentido educativo de la sección invitando a tus alumnos, familiares y amigos a relacionar lo que ven con las matemáticas. Por el nivel de matemáticas necesario no deberían preocuparse, ya que se restringirá al de la E.S.O. y el Bachillerato. Todo lo que vemos son imágenes. Pensando en ellas buscamos en nuestro conocimiento modos de interpretarlas y entenderlas. Ahora se propone la reflexión sobre imágenes no con la intención de efectuar una descripción matemática gratuita de lo que se ve mediante la aplicación de conocimiento matemático, sino más bien al contrario: observar cómo las matemáticas pueden resultar imprescindibles para comprender lo que vemos. La idea es desvelar el trasfondo matemático subyacente en las imágenes, de ahí el título de la sección: imátgenes. Una iMATgen será una imagen portadora de matemáticas esenciales para su comprensión. Nada impide realizar un juego de palabras con un cariz biológico. Puesto que ante una misma imagen dos personas pueden dar interpretaciones diferentes, una imagen puede admitir dos iMÁTgenes distintas. Por eso ofrecemos la posibilidad de participar en la sección mediante el correo electrónico: "imatgenes.suma@fespm.org". Cualquier comentario, sugerencia o ayuda será bien recibida. Muchas gracias. ¡Que lo veáis bien!
Resumo:
Pocas veces una obra, como científicos griegos, que se define a sí misma como una antología, extracto de las aportaciones más significativas de la ciencia griega, produce en el lector la sensación de tener entre las manos un verdadero mirador desde el que se observa, si no con la nitidez del primer plano sí con la visión que proporciona un punto desde el que se puede apreciar la enorme aportación de la ciencia griega a la cultura occidental y a la estructura del pensamiento científico actual.
Resumo:
Este artículo se centra en el estudio de los métodos más usuales implementados en el software informático para generar números aleatorios. EI análisis de dichos algoritmos se acompaña de una panorámica de su evolución histórica y de tres programas en Turbo Pascal que permiten al lector comprobar determinados aspectos de la exposición teórica.
Resumo:
Con frecuencia, al leer el encabezamiento de un artículo, el lector intenta hacerse una idea aproximada de lo que puede estar escrito bajo él, aunque no siempre coincida con lo que realmente hay. Para evitar que esto ocurra entre nosotros, y dado que el título resulta bastante genérico, trataré de introducirle con unos breves comentarios, de manera que si no se siente interesado pueda pasar al próximo artículo. Pero si es un aficionado a los problemas de pasatiempos, o le gusta entretenerse en averiguar" cómo otra gente resuelve problemas, o quiere reflexionar sobre el propio pensamiento cuando es usted el resolutor, o está preocupado en líneas generales por la enseñanza, deténgase un momento y concédame un margen de confianza. Esto quizá le pueda interesar.
Resumo:
El presente trabajo tiene como objetivo que el lector obtenga una mejor comprensión del concepto de probabilidad y una interpretación correcta a la Ley de los Grandes Números. Las actividades planteadas adoptan el enfoque frecuencial de la definición de probabilidad, en donde a través de la simulación de algunos experimentos aleatorios utilizando Excel y desde una perspectiva Brousseauneana, se aproximan las probabilidades teóricas de algunos eventos.
Resumo:
En este artículo se presenta parte de la experiencia desarrollada en la escuela de matemática del Instituto Tecnológico de Costa Rica sobre la enseñanza de métodos numéricos, aprovechando la disponibilidad casi generalizada de la hoja electrónica Excel. La programación de algoritmos se ha hecho con la incorporación de macros; además se presenta al lector la secuencia de instrucciones necesarias para la ejecución de los distintos métodos. Aunque en principio estos materiales corresponden a un curso de nivel universitario, puede utilizarse como idea inicial para adecuar algunos de los conceptos tratados a la enseñanza de la matemática a nivel de secundaria. Tal es el caso de la graficación de funciones, aprovechando la hoja electrónica para ilustrar conceptos de dominio, rango, amplitud y período de funciones trigonométricas, etc.
Resumo:
Se presenta una construcción rigurosa de la función exponencial con base en aproximaciones decimales de números reales y utilizando herramientas relativamente simples de la teoría de sucesiones numéricas. Visto desde la óptica de un docente de secundaria, esta construcción es la formalización de la construcción intuitiva que siempre hemos enseñado a los muchachos. En la primera parte se repasa la completitud de R y sus consecuencias, así como algunas nociones básicas de sucesiones. La segunda parte prsenta paso a paso, la construcción de la función exponencial con exponente racional y en la tercera parte se extiende esta definición a exponentes reales. La presentación es completada con ejercicios que le ayuden al lector a profundizar un poco más en el tema, de acuerdo con los conocimientos previos. El trabajo esta dirigido a profesores y futuros profesores de secundaria. Se ha evitado en lo posible el uso de herramientas matemáticas sofisticadas, con el fin de hacer la lectura apropiada a la mayor audiencia posible.