11 resultados para Gatica, Mónica
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La investigación se realiza en el Instituto Tecnológico Metropolitano de Medellín con estudiantes de 8º, 9º y 10º, en el marco de reconocimiento de los procesos de prueba propuestos por Nicolás Balacheff, analizando los procesos que realizan, y buscando identificar si la ausencia de éstos al interior del aula se debe al poco o mal manejo de los conceptos matemáticos, por esto se realiza una categorización de los errores y las dificultades que comenten los estudiantes; basados en el marco de la Enseñanza para la Comprensión, por último se establecerán estrategias didácticas que permitan a los estudiantes superar las dificultades, mejorando el dominio de los conceptos.
Resumo:
El presente documento corresponde al trabajo final de la concentración en Educación Matemática de la Maestría en Educación de la Universidad de los Andes. El trabajo fue elaborado por cuatro profesores licenciados en matemáticas que ejercen en instituciones educativas públicas y privadas en la ciudad de Bogotá y en el departamento de Cundinamarca. Este informe describe el diseño fundamentado y justificado, la implementación y el balance estratégico de la unidad didáctica titulada “Método gráfico para resolver sistemas de ecuaciones lineales 2x2”. El diseño de la unidad didáctica surgió de la selección de un tema matemático que a su vez hace parte de los contenidos incluidos en el currículo oficial para los grados octavo y noveno de educación básica como lo establece el documento de Estándares Básicos de Competencias (Ministerio de Educación Nacional [MEN], 2006a). El diseño se fundamenta a partir del procedimiento de análisis didáctico que constituyó el contenido central de la maestría. Dicho procedimiento permitió concretar elementos previos a la aplicación y la descripción junto con el balance estratégico de la implementación de la unidad didáctica.
Resumo:
Se analiza la importancia de la inclusión del tema de sucesiones desde preescolar hasta el nivel medio superior en México. El marco teórico que da soporte a esta investigación es la Teoría de Representaciones Semióticas de Duval (1998), en combinación con el uso de tecnología TI-Nspire. Centramos la atención en el nivel medio superior, con la finalidad de que los alumnos a través del manejo de las representaciones semióticas: verbal, gráfica, tabular y analítica, adquieran el concepto de sucesión aún sin definirlo formalmente. A través del uso de representaciones semióticas instrumentadas en la calculadora TINSpire con ejemplos acordes al entorno del alumno (deportes, medio ambiente) se forma el concepto de sucesión. Paralelamente se insiste en la detección tanto del dominio, imagen y grafo; lo anterior con la finalidad de que el alumno visualice y detecte que el dominio de las funciones en juego siempre es el conjunto de los números naturales y la imagen un subconjunto de los números reales, así como de la relación funcional.
Resumo:
Presentamos una reseña del tratamiento que daban distintas culturas antiguas a problemas que en el lenguaje del álgebra actual nos remiten a ecuaciones de segundo grado. Recorreremos, sin pretender ser exhaustivos, parte del camino que transitaron culturas como la babilónica, griega, hindú, árabe hasta la resolución dada por François Viète.
Resumo:
Este trabajo presenta una experiencia realizada con cuatro grupos de alumnos provenientes de dos escuelas locales pertenecientes a noveno año de la EGB y a primer año de la Educación Polimodal. En el mismo se investiga la construcción de la idea de infinito mediante la elaboración del fractal copo de nieve. Se analizan logros y dificultades. Los fractales permiten un acercamiento entre las estructuras analíticas y las formaciones gráficas que muestran los procesos iterativos que repiten infinitamente procesos finitos. Dichos procesos permiten obtener una figura autosemejante. La visualización de estos objetos permite la comprensión de los procesos de cambios de acuerdo a la transformación de la misma figura como así también cuestionarse el por qué de dicho cambio y si el mismo es o no controlable.
Resumo:
Se reporta un estudio de casos realizado con estudiantes de 16-17 años en relación con sus concepciones sobre la gráfica de una función lineal de dominio discreto. En este estudio detectamos que los alumnos presentan dificultades en concebir la gráfica de una función cuando su dominio no es el conjunto de los números reales pues no consideran como gráficas de funciones a aquellas que sean un conjunto de “puntos” y que no formen una “línea continua”.
Resumo:
Presentamos una experiencia de re-aprendizaje de las operaciones con fracciones, por los frecuentes errores algorítmicos en que incurren los estudiantes de segundo año de nivel medio. De evaluaciones diagnósticas e indagaciones sobre las estrategias de enseñanza en la primaria, comprobamos que los aprendizajes previos se limitan a memorizar y repetir algoritmos carentes de significatividad y sentido, fácilmente olvidables. Así nos propusimos aprovechar la potencialidad de la razón para aprendizajes perdurables. Al efecto, diseñamos actividades de tipo experimental tendientes a lograr aprendizajes significativos que justifiquen los algoritmos. Con la experiencia realizada, los estudiantes lograron aprobar las evaluaciones en un alto porcentaje, pero fundamentalmente sintieron una intensa satisfacción con los aprendizajes obtenidos.
Resumo:
Trabajando en un ambiente de Geometría Dinámica y a partir de actividades que involucran al arbelos de Arquímedes se busca explicitar la formulación de conjeturas y elaborar demostraciones que den cuenta de las conjeturas formuladas, poniendo de relieve la diversidad de resultados obtenidos así como la riqueza de los caminos tomados.
Resumo:
La sociedad plantea una variedad de demandas de educación dependiendo de su situación y circunstancias particulares. La educación a distancia representa una realidad mundial en constante crecimiento cuantitativo y cualitativo potenciada últimamente con nuevos medios de comunicación.
Resumo:
Se reporta una investigación realizada con alumnos de 15- 16 años sobre los algoritmos de construcción de un Arco Capaz de segmento y ángulo dado. Se propuso a los alumnos un problema cuya solución óptima es un Arco Capaz de segmento y ángulo dado, y se les requirió luego que construyeran dicho arco utilizando regla, compás y semicírculo. Los alumnos idearon diversas construcciones para el Arco Capaz pero en ningún momento aparece la construcción tradicional de Euclides. Básicamente, la idea que usan los estudiantes para construir el Arco Capaz, es la de obtener un triángulo cualquiera tal que uno de sus ángulos sea el ángulo dado para luego determinar su circuncentro y trazar el Arco.
Resumo:
Con el propósito de promover razonamiento probabilístico bajo los enfoques intuitivo, clásico y frecuencial en estudiantes de grado undécimo sin instrucción previa en probabilidad, se realizó un análisis didáctico para proponer la implementación de un conjunto de tareas que permitan el avance en dicho razonamiento. A partir de dicho análisis se establecen una serie de capacidades, errores y dificultades que perfilan una posible ruta de instrucción y que delinean como aporte de esta ponencia una propuesta de instrucción que incluye situaciones asociadas a juegos de tablero, laberintos, aparato de Galton y carreras de juegos electrónicos.