25 resultados para GEOMETRIA COMPUTACIONAL

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizar álgebra computacional no es tan fácil como puede parecer. Frecuentemente, los estudiantes encuentran obstáculos mientras trabajan en un entorno de álgebra computacional. En este artículo se distinguen los obstáculos globales y los locales, y se identifican los de ambas categorías. La teoría de la instrumentación proporciona un marco para interpretar el obstáculo como un desequilibrio entre los aspectos conceptual y técnico de un esquema de instrumentación. Se argumenta que explicitar los obstáculos y tratar de superarlos, conduce al desarrollo conceptual. En consecuencia, los obstáculos constituyen oportunidades de aprendizaje.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo tiene como objetivo dar argumentos en favor de la inclusión de los sistemas de álgebra computacional en el currículo de matemáticas desde el nivel medio de enseñanza hasta el nivel superior. Primero, se presentan algunos conceptos relativos al uso de estos sistemas en la educación. Después, se presentan varios ejemplos con el propósito de mostrar el poder de estos sistemas como auxiliares en la solución de problemas. Finalmente se hace una propuesta acerca de su uso en educación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Geometria Analítica é parte integrante dos conteúdos a serem trabalhados na Educação Básica. Além disso, os conceitos trabalhados na Educação Básica são aprofundados nos componentes curriculares dos cursos de graduação das ciências exatas tais como Engenharia, Ciências da Computação, Arquitetura, Matemática, Física, etc. Seu estudo é relevante, pois é uma ferramenta importante para o Cálculo Diferencial e Integral e é uma das principais referências em um primeiro curso de Álgebra Linear. Este trabalho tem por objetivo apresentar um estudo histórico e epistemológico das primeiras contribuições da Geometria. É importante que o professor discuta os acontecimentos históricos ao trabalhar com os conteúdos da Geometria Analítica, propor aos alunos os problemas matemáticos que originaram os conceitos da Geometria Analítica e possibilite ao aluno a construção do conhecimento e não apenas para a resolução de algoritmos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El cálculo diferencial e integral, es materia obligada en gran parte del currículo escolar y piedra angular en el desarrollo de la matemática. A pesar de ello en escuelas tanto a nivel medio como superior, los reportes de problemas en su enseñanza aprendizaje son frecuentes. Esta materia presenta un alto índice de reprobación, inclusive con alumnos que recursan. Este estudio muestra una fuerte tendencia, en la educación, a visualizar el cálculo como un patrón de fórmulas y procedimientos algebraicos, dejando fuera los aspectos conceptuales. En el mismo sentido Dreyfus (1990, 124), reporta que las investigaciones en Francia exhiben la tendencia de los estudiantes a los aspectos de procedimiento algorítmicos, dejando fuera los conceptuales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atualmente, a escola vive sempre procurando acompanhar as constantes transformações do mundo “globalizado”, e isso se transforma numa luta, às vezes desigual, pela conquista do universo dos estudantes tão bombardeado de novidades audiovisuais e eletrônicas. Neste trabalho, mostra‐se como a partir do estudo do meio, foi possível despertar o interesse de estudantes brasileiros do ensino médio pela Geometria presente na construção da maloca de indígenas Uitoto da Amazônia colombiana. Mostra também, que além dos meios tecnológicos disponíveis, o professor de matemática pode utilizar os recursos existentes na comunidade ou na própria escola como objeto de ensino atrativo, pois tudo depende da forma como este objeto irá ser usado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo recoge algunos ejercicios de una colección para sistematizar contenidos de geometría plana, manteniendo vigente en todos, el concepto de movimiento. De acuerdo con las sugerencias de la investigación “Cómo transcurre la línea directriz geometría en secundaria básica”, se proponen ejercicios, sin complicaciones extremas, donde se crean condiciones para la creatividad de los alumnos pues, son de respuestas abiertas y los maestros los pueden utilizar para la creación de otros y elevar el protagonismo de los educandos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A través del taller se muestra la posibilidad del uso del programa computacional Cabri para el desarrollo del pensamiento variacional especialmente; mostrando el comportamiento general de cada una de las funciones trigonométricas en el plano cartesiano, graficándolas en el mismo plano haciendo una simulación de eje “y” sobre el mismo sistema coordenado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para la Educación Matemática, el uso de la tecnología computacional hoy, reviste particular interés investigativo en lo que respecta al aprendizaje de las matemáticas de nuestros niños y niñas en las instituciones escolares; dado que, la tecnología computacional posibilita el estudio (tratamiento) de los objetos matemáticos y sistemas de representación y las representaciones semióticas que constituyen un elemento básico para entender la construcción del conocimiento de los estudiantes (Lupiañez, Moreno,1999) y desde las actividades cognitivas de representación inherentes a la semiosis: formación, tratamiento y conversión, de registros semióticos (Duval,1999).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este cursillo trabajaremos una propuesta de ingeniería didáctica para el estudio de las cónicas como lugares geométricos a partir de un trabajo experimental con espejos y su modelación con geometría dinámica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La incorporación en la vida cotidiana de las nuevas tecnologías de la información y la comunicación ha significado un cambio radical en la forma de desarrollar el proceso de enseñanza y aprendizaje en las diferentes disciplinas y niveles escolares. En este sentido, el software de geometría dinámica “Cabri Géomètre II Plus” es un programa computacional de fácil manipulación, amigable y de rápido aprendizaje, que permite a los estudiantes visualizar, descubrir, conjeturar y/o comprobar propiedades que se deseen trabajar. El presente artículo tiene como finalidad mostrar actividades en el tema de transformaciones isométricas y que se pueden desarrollar con el uso de Cabri II Plus, y que permiten el desarrollo del pensamiento geométrico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os resultados apresentados referem-se à pesquisa sobre a transição Ensino Médio e Superior para as noções de Geometria Analítica. O referencial teórico da pesquisa é a Teoria Antropológica do Didático de Bosch e Chevallard (1999), a noção de quadro de Douady (1984), a noção de ponto de vista de Rogalski (1995, 2001) e a abordagem teórica em termos de níveis de conhecimento de Robert (1997). As análises das relações institucionais foram efetuadas por meio de documentos oficiais e livros didáticos e as relações pessoais por meio de macro avaliações. Os resultados encontrados mostram uma crescente preocupação institucional com a articulação dos ostensivos e não ostensivos associados às noções de Geometria Analítica e uma tendência em deixar o tratamento do espaço IR3 para Ensino Superior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ante la problemática que presenta la enseñanza y el aprendizaje de los conceptos del cálculo diferencial y también al surgimiento de herramientas computacionales capaces de graficar y realizar derivación simbólica y manipulaciones algebraicas, se requiere una reflexión crítica sobre cómo se puede utilizar la tecnología para apoyar la enseñanza y el aprendizaje del cálculo. En este artículo, se hace una propuesta didáctica que se ha implementado en un sistema computacional y un libro que la implementa. El acercamiento se apoya fuertemente en actividades con polinomios a través de los cuales se puede apreciar el poder del cálculo diferencial sin demérito de considerar situaciones suficientemente complejas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo es parte de un proyecto de investigación sobre la aplicación de tecnología computacional en la enseñanza y aprendizaje de matemáticas con alumnos de nivel medio básico o secundaria (séptimo a noveno grado) y nivel medio superior o bachillerato (décimo a doceavo grado), en particular, trata de entender la función mediadora del efecto de “arrastre” del software de geometría dinámica en la cognición de sujetos que estudian las nociones de variación y variable. Aquí reportamos los resultados de una exploración, usando Cabri, en el aprendizaje de esas nociones con estudiantes de nivel medio básico de 13-14 años de edad. Se describen las actividades, las respuestas de los estudiantes y una experiencia que sugiere el potencial de la verbalización de los resultados por los estudiantes en el proceso de simbolización algebraica.