9 resultados para Función del objeto

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En la presente experiencia de aula se mostrarán los aspectos que hicieron necesario trabajar con los estudiantes de grado undécimo las cónicas, en especial, la circunferencia, desde lo planteado por el Ministerio de Educación Nacional en los Estándares de Calidad y en los Lineamientos Curriculares, para luego ver la necesidad del uso del geoplano como recurso didáctico para la construcción del objeto matemático, partiendo de las dificultades que presentan los estudiantes en la construcción e identificación de las propiedades de las cónicas, especialmente de la circunferencia. Seguidamente, se expone la descripción general de la experiencia, los logros y dificultades que surgieron en el proceso de enseñanza y se finaliza con la reflexión que generó este proceso de enseñanza-aprendizaje.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El siguiente documento presenta una secuencia de actividades para trabajar la noción del concepto de limite involucrado en el pensamiento variacional en grado once, donde se toma como punto de partida el trabajo con sucesiones, permitiendo desarrollar a través del uso de diferentes tipos de sucesiones y la noción de convergencia; dicho concepto, tomado desde la definición de (Steward, Redlin, & Watson, 2001). Basado en la metodología propuesta por el grupo (DECA, 1992), la cual, no solo muestra el enseñar matemáticas, como entregar algoritmos al estudiante, sino que por el contrario, un aprendizaje desde la construcción del objeto matemático, resaltando la participación activa y critica del estudiante.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En este trabajo se resume la investigación pedagógica realizada para llegar al diseño de un programa de la disciplina Matemática para ingeniería eléctrica. Se hace referencia a los pasos seguidos en la investigación pedagógica, así como los resultados obtenidos en cuanto a la determinación del objeto de estudio de la matemática en la carrera en cuestión y la obtención de los objetivos generales instructivos acordes con la derivación de los mismos a partir del modelo del profesional. También se incluyen algunos problemas con los cuales se obtienen los modelos matemáticos que dan lugar a la determinación del objeto de la matemática en ingeniería eléctrica de la Universidad Central “Marta Abreu” de las Villas. El programa confeccionado se está aplicando desde el curso 97-98 con buenos resultados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En este taller los participantes, a partir del desarrollo de una tarea, identifican algunas etapas en la formulación y validación de conjeturas. La tarea se centra en la exploración de un applet relacionado con la ecuación vectorial de la recta en el plano, a partir del cual se identifican algunas propiedades geométricas del objeto geométrico y, con estas, se establecen e intentan validar generalidades. Este taller surge en el marco del proyecto de investigación “Razonamientos abductivos, inductivos y deductivos desarrollados por estudiantes del curso de Geometría Analítica al realizar una tarea relacionada con la representación de objetos geométricos en distintos sistemas coordenados” que se realiza este año en la Universidad Pedagógica Nacional.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La propuesta de innovación surge por las dificultades de los estudiantes en el aprendizaje de la geometría proporcional, en particular, en la propiedad Potencia de un punto exterior a la circunferencia.Para su diseño se considera como referente teórico, la articulación propuesta por Montoya (2010), complemento entre “Paradigmas geométricos” de Houdement y Kuzniak y los Procesos de Pruebas de Balacheff. En base a antecedentes obtenidos de un estudio epistemológico del objeto, se diseñan distintas pruebas que propician el tránsito entre los paradigmas de la geometría natural (GI ) y la geometría axiomática natural (GII) , aportando así en el aprendizaje de la propiedad en estudio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los problemas combinatorios tienen profundas implicaciones tanto en el desarrollo de algunas ramas de la Matemática como en otras disciplinas (Batanero, Godino y Navarro-Pelayo, 1994). Una mención especial merece el papel de la Combinatoria en la Probabilidad, ya que una escasa capacidad del razonamiento combinatorio reduce la aplicación del concepto de Probabilidad a casos muy sencillos o de fácil enumeración (Piaget e Inhelder, 1951). Debido a la importancia del tema, decidimos concentrarnos en su tratamiento en algunos libros de texto de Matemáticas de Educación Secundaria. Nos basamos en el desarrollo de la teoría de los significados sistémicos, desarrollada por Godino y colaboradores, para considerar el libro de texto como una institución y, en ese contexto, el problema de investigación abordado es la caracterización del significado institucional del objeto matemático “Combinatoria” en los libros de texto citados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El presente texto muestra una investigación que trabaja la enseñanza-aprendizaje de aspectos asociados al límite como aproximación optima, desde un análisis teórico (apoyado en APOE) que parte de una descomposición genética del objeto límite y brinda los primeros indicios de las construcciones mentales que poseen los estudiantes, luego se complementa con un parte de diseño e implementación de actividades en el aula con el ciclo de enseñanza ACE. Como la base es una investigación sobre la propia práctica del docente, se trata de un primer avance en este campo, lo que implica un estudio abierto a cualquier persona que requiera ampliarlo y/o complementarlo.