1 resultado para Fringe pattern traces
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Filtro por publicador
- Repository Napier (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (2)
- Aquatic Commons (40)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (16)
- Brock University, Canada (4)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (63)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (157)
- Cochin University of Science & Technology (CUSAT), India (22)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (24)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (4)
- Digital Commons @ Winthrop University (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (6)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (84)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (5)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (14)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (92)
- Queensland University of Technology - ePrints Archive (110)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (3)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (16)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (2)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
Pattern generalization is considered one of the prominent routes for in-troducing students to algebra. However, not all generalizations are al-gebraic. In the use of pattern generalization as a route to algebra, we —teachers and educators— thus have to remain vigilant in order not to confound algebraic generalizations with other forms of dealing with the general. But how to distinguish between algebraic and non-algebraic generalizations? On epistemological and semiotic grounds, in this arti-cle I suggest a characterization of algebraic generalizations. This char-acterization helps to bring about a typology of algebraic and arithmetic generalizations. The typology is illustrated with classroom examples.