3 resultados para Fase pré pico
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El uso de software de geometría dinámica en el aula de clase es una herramienta que posibilita el desarrollo de diferentes habilidades y destrezas en el campo geométrico y potencializa otras tales como la visualización, la elaboración de conjeturas, la argumentación, la construcción de definiciones y la formalización de argumentos. El presente trabajo busca compartir la experiencia alcanzada con la aplicación de tres actividades exploratorias con polígonos y ver las posibilidades y limitaciones que el software ofrece en el desarrollo conceptual alrededor de los mismos.
Resumo:
El presente trabajo tiene la intención de analizar las fases de las prácticas de modelación en la escuela y el papel de la analogía como una de ellas. Las prácticas de modelación las caracterizamos como prácticas recurrentes de diferentes comunidades que articulan dos entidades (fenómenos y sus referentes matemáticos) con la intensión de intervenir en una de ellas a partir de la otra. Esta caracterización plantea de entrada la interacción con el fenómeno, esto define a la primera fase, emergiendo la experimentación en el sentido amplio. La segunda fase, la caracterizamos como el acto de modelar, en donde se realiza la articulación por medio de alguna acción de las entidades participantes; la tercera fase es la articulación de los modelos con el fenómeno en una red. Una cuarta fase es la analogía que descentra la red de modelos del fenómeno original que le dio lugar. En esta fase se pretende la articulación de redes de modelos, dando lugar a redes de redes.
Resumo:
La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.