4 resultados para Falsa puerta
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El estudio de las magnitudes y su medida es de gran importancia, debido a su aplicabilidad y uso en una gran cantidad de actividades de la vida cotidiana; así por ejemplo, frecuentemente es necesario tomar decisiones acerca de situaciones como: el tamaño de unos muebles, de modo que resulten acordes con el tamaño de una habitación, y la forma de acomodarlos para que la longitud de las dimensiones del objeto se acoplen a la puerta de dicha habitación; si el espacio disponible en un parqueadero es suficiente para estacionar o no un vehículo; la cantidad de papel o de cualquier otro material, necesario para realizar un determinado trabajo; cálculo o estimación de la distancia entre dos puntos; etc.; casos en los cuales se hace necesario recurrir a un cierto conocimiento y manejo de la magnitud longitud; en donde se puede considerar que la construcción de este concepto es un proceso que requiere la interacción entre los estudiantes y las situaciones del entorno, en el cual se encuentran objetos con características susceptibles de ser medidas, de las cuales la longitud, será el interés en este documento. Pero si cotidianamente se utiliza este concepto, podría surgir la pregunta ¿Los estudiantes han construido completamente el concepto longitud?
Resumo:
Se espera que esta iniciativa sea bien acogida y contribuya, aunque sea mínimamente, a fomentar la colaboración y el intercambio de ideas entre todos los colegas interesados en mejorar la educación matemática mediante el uso de la tecnología de bolsillo.
Resumo:
¿Cómo se logran esas bonitas y suaves curvas en la pantalla de un ordenador? Parece que fluyen suavemente y no tienen ese efecto desigual que sale si dibujas un montón de puntos y los unes con segmentos rectilíneos. La razón es que el software muestrea los dibujos y usa métodos de interpolación suave. A menudo, el método de interpolación es el llamado de los splines cúbicos, que aprovecha inteligentemente ciertos conceptos matemáticos corrientes, como mostraremos a continuación.
Resumo:
En este trabajo pretendemos mostrar que la presunta alternativa entre geometría sintética y geometría analítica es, en realidad, una falsa alternativa fruto de un análisis epistemológico superficial. Proponemos una forma de conectar, en la enseñanza de la geometría en secundaria, las técnicas sintéticas con las analíticas a fin de poner de manifiesto su complementariedad.