7 resultados para Extensión univeristaria
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En el contexto del modelo de Van Hiele, se ha llevado a cabo un estudio comparativo de dos colecciones de descriptores para el mismo concepto: El de aproximación local en su manifestación de la recta tangente a la gráfica de una curva en un punto. A partir de las visualizaciones que se obtienen de los mecanismos llamados "haz de secantes" y del "zoom", se concluye que, en efecto, el nivel de razonamiento es independiente de la forma de abordar el concepto, de ese mecanismo particular usado para acercarse al mismo.
Resumo:
En el trabajo que hemos venido realizando en las pasantías de extensión, pretendemos desarrollar parte de la trigonometría desde la época griega hasta la actualidad; tomando como eje central la proporcionalidad, basados en una metodología de resolución de problemas e implementado la calculadora T.I.- 92 Plus en el aula. Para llevar a cabo este proyecto, diseñamos una serie de actividades enfocadas a desarrollar el concepto de proporcionalidad, trabajando desde la semejanza de triángulos. Este enfoque permite al estudiante, por medio de sus experiencias, construir un conjunto de herramientas que le contribuya no sólo enfrentarse a una situación problema, sino que también le ayude a desarrollar su comprensión y habilidad matemáticas.
Resumo:
En este artículo mostraremos unas extensiones del Teorema de Pitágoras en su acepción geométrica, tomando en consideración el área de las figuras geométricas que están sobre los lados de un triángulo rectángulo y de esta manera ver que se cumple la relación Pitagórica para cualquier tipo de figuras que cumplan cierta condición. En particular, esta extensión la vamos a realizar usando las cuadraturas del rectángulo o del triángulo, como por ejemplo para el triángulo equilátero y luego para los semicírculos o las lúnulas, para lo cual cuadratura es lo mismo que decir área.
Resumo:
La matemática es un idioma como varios autores han mencionado en diferentes trabajos científicos. En este artículo se analizan y comparan cuatro componentes del lenguaje y la matemática. Por otra parte, la matemática no es exactamente como otros idiomas. De hecho, la matemática parece ser más precisa y más limitada que los otros idiomas y esto tiene varias consecuencias en lo que se refiere a la enseñanza de dicha disciplina. En este artículo comentaremos nuestras experiencias, desarrolladas en Argentina, Alemania y Uruguay, teniendo en cuenta este enfoque de la enseñanza de la matemática como una extensión de la enseñanza de la lengua, y veremos cómo este enfoque ayudó a los estudiantes de los cursos de Cálculo, en diferentes formas.
Resumo:
Este documento reporta los resultados de un estudio exploratorio aplicado a estudiantes de secundaria que presentan problemas de equiprobabilidad y centración en ejercicios de probabilidad basados en el razonamiento proporcional. Los problemas propuestos a los estudiantes han sido analizados por Green, Papinni, Fischbein y Gazit en investigaciones previas, de esta manera, nuestro aporte consiste en proponer una extensión a los resultados obtenidos por estos autores a partir de marco conceptual SOLO Taxonómico propuesto por Biggs y Collins (1982), que consiste en cinco niveles presentes en el ciclo de aprendizaje de una persona dentro de cada uno de los estadios de Piaget.
Resumo:
Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.
Resumo:
La delimitación de finalidades es un dato esencial para cualquier plan de formación: por ello, las finalidades de un currículo de matemáticas lo caracterizan en su extensión y alcance, y constituyen parte determinante en el proceso de su planificación.