7 resultados para Explicación sistémica

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mostraremos a continuación la posibilidad de generar modelos matemáticos simples a partir de la explicación de un hecho físico. El marco teórico de partida es el de la explicación científica con la estructura del modelo nomológico deductivo. El uso de modelos matemáticos en este marco genera herramientas didácticas de distinto tipo, en este articulo desarrollamos brevemente el diseño de proyectos de investigación para los alumnos. El docente puede generar y luego utilizar estos proyectos de distintos modos, por ejemplo, como actividad de cierre de un curso, o también para generar una discontinuidad en el transcurso de la cursada, como actividad en paralelo que ocupe algún momento de las clases, etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se describe y analiza el programa GeoGebra. Este software nos permitirá crear construcciones y páginas web dinámicas de una forma fácil e intuitiva. Con el alumnado podremos trabajar con la propia aplicación o con los archivos html interactivos que se generan tras una sencilla exportación. El uso de GeoGebra no es complicado y no requiere dedicar sesiones específicas para la explicación de su funcionamiento. Desde el primer contacto con el mismo y con pequeñas aclaraciones por parte del profesorado, el alumnado será capaz de crear construcciones elementales. Conforme vaya utilizándolo con más frecuencia irá profundizando en sus posibilidades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se hace un estudio de las actitudes que pueden generar en los alumnos, los problemas planteados en los libros de texto de matemáticas en educación secundaria. En el que se hace una breve explicación de las actitudes hacia el estudio de esta asignatura al constatar su escaso desarrollo, en comparación con el de los conocimientos conceptuales y procedimentales. También incluye un reconocimiento de los referidos problemas por los profesores, quienes comparten la tesis de que los problemas en contextos auténticos producen actitudes positivas, en tanto que los que se ubican en contextos artificiales producen actitudes negativas. Los alumnos al resolver dichos problemas afirman que los del primer tipo son interesantes porque los hacen pensar y los de contextos artificiales los enredan. Además se hacen consideraciones sobre la actualización de los libros de los alumnos, en términos de plantear problemas en contextos auténticos que generen actitudes positivas hacia las matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se indaga en los desplazamientos entre herramientas de comunicación que ponen en juego profesores a la hora de comunicar qué y cómo cambia en una situación, en el marco de una línea de investigación en Pensamiento y Lenguaje Variacional (Proyecto Fondecyt Nº1030413 y Proyecto Diumce 06/07). Adscribimos a una mirada sistémica en la que entendemos a las matemáticas como una actividad humana en donde cobra vital importancia la persona haciendo matemáticas y no sólo el producto matemático. Por ello resulta relevante considerar -en la praxis educativa- las negociaciones y búsqueda de consenso entrelazadas éstas, con las acciones cognitivas de la persona al momento de enfrentarse a la solución de un problema. Asumimos una naturaleza de la noción de variación como red semántico operacional transversal, que imbrica distintos contenidos escolares de ciencia experimental y de matemática, particularmente aquellos de tiempo y velocidad. Entendemos al tiempo cotidiano formado por una red compleja de intencionalidades y coordinaciones que se estructuran a partir de las necesidades de coordinación con lo otro, con los otros y de las proyecciones intencionales hacia un futuro y un pasado, y, al tiempo matemático en su calidad de parámetro y figurado sobre la base de la metáfora de una distancia horizontal. A continuación se analizan, desde ese marco conceptual, las herramientas a que recurren profesores para comunicar cambios en una situación específica desarrollada en el marco las actividades del Proyecto de Investigación Las representaciones docentes del Cambio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo forma parte de una investigación que pretende analizar la concepción que tienen los docentes de la noción de demostración dentro de la matemática y la influencia en sus prácticas. En él se plantea la necesidad de diferenciar diversas funciones para la demostración en matemática analizando su presencia en las concepciones de docentes y estudiantes del profesorado de matemática. El papel y la función de la demostración en el aula, o ha sido totalmente ignorada o bien se presta como medio de certeza, y en menor medida de explicación. Estas funciones más priorizadas se pueden vislumbrar a través de las respuestas obtenidas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el artículo que presentamos se revisan las investigaciones y trabajos relacionados con el papel que desempeñan las diferencias de sexo, en el aprendizaje de las matemáticas. Después de señalar las distintas conjeturas que se han ofrecido como explicación a las diferencias en logros y expectativas, se destaca la influencia social y cultural: condicionantes sociales, influencias grupales, la propia estructura de las matemáticas y la de la propia escuela y los profesores.