6 resultados para Efecto de la luz sobre
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Este trabajo aporta elementos que robustecen la socioepistemología propuesta sobre lo periódico en la que la predicción es la práctica asociada a la construcción del conocimiento matemático. Además de trabajar en un contexto de funciones periódicas distancia-tiempo, se abordan otros contextos como las sucesiones periódicas de números y de figuras.
Resumo:
En el campo de la investigación en educación matemática los cambios que en la enseñanza en general se han venido produciendo en los últimos tiempos, se manifiestan al asumir nuevos esquemas investigativos sustentados en una visión fenomenológica (Martínez 1997, 1999) del hecho educativo que comporta a su vez, nuevas formas de abordar el proceso de enseñanza y aprendizaje de la matemática bajo una concepción más comprensiva e integradora, donde hay más cabida para la pregunta, para el cuestionamiento, que para las certezas o la certidumbre. En esta comunicación revisamos las propuestas de Kilpatrick y Sierspinka (1996) y de González (2000), para la conformación de una agenda de investigación en educación matemática, orientándolas a la luz de las nuevas consideraciones teóricas–metodológicas que emergen en estos tiempos postmodernos. Asimismo, se plantea la necesidad de revisar los postgrados en Educación Matemática a fin de convertirlos en espacios para la reflexión, para la discusión y para la confrontación de saberes, propiciando la consolidación del binomio formación–investigación a través de la implementación de currículo menos escolarizados y más dirigidos a la práctica investigativa (Becerra, 2001). Por último, abogamos por la investigación sobre la enseñanza y el aprendizaje de la matemática, realizada por los profesores de matemática, en el propio entorno escolar siguiendo las utopías y renovaciones de Alcina (1998) y las concepciones epistemológicos, pedagógicos y didácticos que en la actualidad dirigen las actividades educativas (Gallegos Badillo y Pérez Miranda, 1991), enfocándolas a la enseñanza de la matemática.
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. La elevada complejidad de su estudio y el considerable volumen de conocimientos sobre el tema disponible en la actualidad, justifican la pertinencia de trabajos como el que aquí se presenta, que tiene como principales propósitos delimitar, a través de la reflexión sobre distintas cuestiones abiertas fundamentales, algunos de los principales problemas actuales en torno a la investigación sobre comprensión en matemáticas y trazar, en base a ellos, posibles vías de actuación operativas.
Resumo:
Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.
Resumo:
Esta es la segunda parte del artículo1 cuya presentación se inició en el número anterior de esta revista (pp. 95-140). Se incluye aquí lo referente a otras cinco necesidades de los alumnos, que según las teorías disponibles, son una fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. Para cada una de tales necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto?.
Resumo:
El propósito de este trabajo es presentar una investigación de campo de tipo descriptiva en donde el empleo del geoplano como recurso didáctico contribuyó de manera positiva en la comprensión de objetos geométricos estudiados en la clase matemática. Teniendo que una de las tareas del profesor de matemáticas es conseguir que sus estudiantes comprendan los diversos conceptos que están en juego, no de una forma mecánica, sino que puedan operar con ellos en diversos contextos. (Serrazina y Matos, 1968). La intención de este modesto trabajo es ayudar a los docentes en servicio a la hora de escoger recursos didácticos y elaborar actividades que favorezcan la comprensión en los estudiantes. Este trabajo se efectúo a la luz de los niveles de Van Hiele. Se realizó en un Liceo ubicado en el Municipio Zamora del Estado Miranda con estudiantes pertenecientes a primer año de educación media general, durante el período académico 2010-2011. Se obtuvo que la mayoría de los estudiantes se ubican en el nivel de análisis del modelo antes nombrado.