34 resultados para ENSEÑANZA DE LAS MATEMATICAS
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Hace algunos meses, los directores de SUMA me encargaron coordinar un trabajo monográfico que recogíera la situación, más o menos actual, de la enseñanza de las matemáticas en Europa, para la escolarización obligatoria y postoblígatoria, en sus diversas opciones, anterior a la universidad.
Resumo:
En este trabajo establecemos la siguiente hipótesis: el sistema conjeturas-pruebas-refutaciones constituye la lógica del descubrimiento matemático escolar; bien entendido que en las matemáticas de la enseñanza secundaria el énfasis no puede situarse en la frontera móvil que Lakatos (1978) ha señalado en el trabajo de los matemáticos profesionales, esto es, la frontera demostraciones/refutaciones sino más bien en la frontera anterior, conjeturas/demostraciones. Dicho sistema supera didácticamente al enfoque unidimensional de demostración como prueba formalizada, enfoque tradicional del estilo deductivista en la enseñanza de las matemáticas. Esta hipótesis surge del análisis de las dificultades epistemológicas, cognitivas y didácticas del concepto de demostración (en particular, de la demostración por reducción al absurdo) y de la revisión de algunos estudios experimentales sobre la práctica escolar de la demostración.
Resumo:
Los últimos informes PISA sitúan a nuestros alumnos de la ESO a mucha distancia de los países desarrollados de la OCDE en lectura, escritura y matemáticas. En mi opinión, estos resultados son reflejo de una falta de motivación y de una actitud inadecuada hacia nuestra asignatura, que hace necesario, como profesores de matemáticas, plantearnos cuestiones relacionadas con qué enseñar y cómo enseñarlo. Además, el nuevo enfoque educativo basado en Competencias Básicas supone un cambio de gran magnitud en todos los aspectos del currículo, y en especial, en la metodología. Esto hace que el método de Aprendizaje basado en Proyectos adquiera un papel relevante al fomentar procesos reflexivos y de investigación, promover la autonomía del alumnado, el trabajo cooperativo y el uso de las TIC, además de mostrar la implicación de las matemáticas en el mundo que les rodea y en otras ciencias. Este trabajo de investigación elaborado para el presente curso 2012/2013, y en él se pretende poner en práctica este modelo de enseñanza-aprendizaje para valorar sus implicaciones en las actitudes del alumnado hacia las matemáticas y en relación con la adquisición de Competencias Básicas como las de Aprender a Aprender y Autonomía e Iniciativa Personal.
Resumo:
En esta investigación pretendemos obtener una mayor información relativa al conocimiento de los profesores de matemáticas, en particular, al conocimiento del contenido y estudiantes (KCS, por sus siglas en inglés –Knowledge of Content and Student ) mientras éstos se encuentran inmersos en su propia práctica. Nos enfocamos en un modelo del conocimiento matemático para la enseñanza (MKT, por sus siglas en inglés – Mathematical Knowledge for Teaching ). Es un estudio de 2 casos, los instrumentos de recogida de información son: observación de aula, cuestionarios y entrevistas a los dos casos. Finalmente, aportamos distintos indicadores del KCS que pueden ser considerados para identificar y comprender el KCS, éstos pueden ayudar a analizar a otros profesores o ser considerados en la formación del profesorado de bachillerato.
Resumo:
La incorporación en la vida cotidiana de las nuevas tecnologías de la información y la comunicación ha significado un cambio radical en la forma de desarrollar el proceso de enseñanza y aprendizaje en las diferentes disciplinas y niveles escolares. En este sentido, el software de geometría dinámica “Cabri Géomètre II Plus” es un programa computacional de fácil manipulación, amigable y de rápido aprendizaje, que permite a los estudiantes visualizar, descubrir, conjeturar y/o comprobar propiedades que se deseen trabajar. El presente artículo tiene como finalidad mostrar actividades en el tema de transformaciones isométricas y que se pueden desarrollar con el uso de Cabri II Plus, y que permiten el desarrollo del pensamiento geométrico.
Resumo:
El cálculo diferencial e integral, es materia obligada en gran parte del currículo escolar y piedra angular en el desarrollo de la matemática. A pesar de ello en escuelas tanto a nivel medio como superior, los reportes de problemas en su enseñanza aprendizaje son frecuentes. Esta materia presenta un alto índice de reprobación, inclusive con alumnos que recursan. Este estudio muestra una fuerte tendencia, en la educación, a visualizar el cálculo como un patrón de fórmulas y procedimientos algebraicos, dejando fuera los aspectos conceptuales. En el mismo sentido Dreyfus (1990, 124), reporta que las investigaciones en Francia exhiben la tendencia de los estudiantes a los aspectos de procedimiento algorítmicos, dejando fuera los conceptuales.
Resumo:
Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.
Resumo:
La enseñanza de las matemáticas en un contexto de inclusión escolar supone un reto para el sistema educativo en la actualidad. El iniciar a inducir contenidos formales y de un nivel de abstracción elevado en un contexto de estudiantes con necesidades educativas especiales supone un cambio en la forma que se presentas estos contenidos. El presente trabajo describe el diseño, puesta en práctica y análisis de una propuesta de enseñanza de la geometría analítica con estudiantes del grado decimo del colegio Euskadi (Colombia). Logrando analizar las implicaciones de la metodología aula taller y el papel fundamental de la geometría como mediación entre el mundo real y las matemáticas.
Resumo:
En este artículo analizamos los tipos de tareas que se pueden realizar con Thesaurus, un diccionario multimedia de matemáticas en red, utilizando el aula de informática para la clase de matemáticas en la ESO. Asimismo valoramos su influencia en el desarrollo de competencias matemáticas. El estudio se centra en el diseño y puesta en práctica de unidades didácticas de geometría con Thesaurus y en el análisis de los resultados de pruebas piloto realizadas por distintos grupos de alumnos.
Resumo:
Este artículo recoge el contenido de la intervención de su autor el 21 de febrero de 2002 ante la Ponencia sobre «La situación de las enseñanzas científicas en la educación secundaria» creada en la primavera de 2001 en la Comisión de Educación, Cultura y Deporte del Senado español, y en la que colaboran las Reales Sociedades de Matemáticas, Física y Química.
Resumo:
A partir del innegable hecho de la influencia de las nuevas tecnologías en la sociedad actual, se presenta aquí una reflexión sobre su influencia en la enseñanza de las matemáticas: desde los cambios metodológicos que su uso implica y los problemas que causa en la organización de los centros educativos, pasando por su presencia en el currículo de matemáticas y las sugerencias que se hacen para propiciar tal uso, hasta la presentación de algunos programas informáticos, contenidos y forma de utilización, así como los distintos bloques de contenidos del currículo de matemáticas a los que se ajustan.
Resumo:
Robert Glaser, en su artículo titulado “Variables en el aprendizaje por descubrimiento”, resalta que es la inducción el método seguido en el aprendizaje por descubrimiento, pero que la inducción lleva implícito el aprendizaje con errores.
Resumo:
La enseñanza de las matemáticas apoyada en el uso de software de geometría dinámica como El Geómetra (The Geometer’s Sketchpad) puede hacerse mucho más significativa y fomentar de manera mucho más eficiente un pensamiento reflexivo y un razonamiento deductivo en nuestros alumnos, no importa el grado en que se encuentren. Ahora bien, con la versión 4.0 de Sketchpad es posible enseñar de una manera más amable no sólo la geometría, sino cualquier rama de las matemáticas, desde la aritmética hasta el cálculo, pasando por el álgebra y la geometría analítica. En este artículo se verán algunas actividades con Sketchpad cuya intención es ilustrar el uso de la exploración, visualización y la demostración para desarrollar el entendimiento matemático y el razonamiento reflexivo en nuestros alumnos.
Resumo:
La Constitución de Cádiz (1812) inicia el origen de la enseñanza secundaria en España. Dichos estudios corren parejos con el desarrollo de la burguesía como clase diferenciada, y como tal se identifican los nuevos estudios con la nueva clase social. Paralelamente al nacimiento de la secundaria, los contenidos en matemáticas de los programas, se van abriendo paso y quitando horas a los tradicionales de humanidades. El recorrido histórico termina con la trascendental Ley Moyano en 1857.
Resumo:
En este trabajo se presenta una visión particular de las matemáticas, por ejemplo ruta matemática como recurso didáctico para utilizar con los estudiantes. Esta visión no sólo se refiere observación, Sino también e interpretación, aplicación y conexión de lo que se ve. Finalmente se exponen algunas sugerencias acerca de su aplicación en las aulas.