5 resultados para Cuerpos travestis

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se presenta la posibilidad de introducir algunos temas de Matemáticas de secundaria o bachillerato, como pueden ser, entre otros, la combinatoria, los cuerpos geométricos o incluso el propio número complejo, mediante la utilización del juego icosaédrico. Para ello se indica en primer lugar una breve biografía del descubridor de este juego: Sir William Rowan Hamilton, que pueda servirle al profesor como apoyo histórico para conseguir una mayor motivación del alumno a la hora de afrontar sus clases de Matemáticas; se muestran seguidamente las reglas de este juego, haciendo especial hincapié en las ventajas que puede ofrecer su uso en las clases de Matemáticas de Secundaria, fundamentalmente a la hora de introducir la Combinatoria; y se comentan también, finalmente, algunos otros juegos relacionados con el citado, que pueden ser utilizados por el profesor como soporte lúdico en la impartición de sus clases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nos proponemos estudiar las construcciones de polígonos regulares con regla y compás con la asistencia del GeoGebra, y presentar una secuencia de acciones que pueden resultar de base para enseñar estos conceptos. Para un mejor aprovechamiento de este trabajo, los lectores deberían tener nociones de geometría, particularmente estar familiarizados con los problemas de construcciones con regla y compás. También es recomendable tener conocimientos de estructuras algebraicas, especialmente de extensiones de cuerpos. Por estos motivos está dirigido a docentes de educación terciaria y a estudiantes que tengan los conocimientos mencionados anteriormente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las distancias entre saberes de la vida diaria, los escolares y los eruditos, afincan sus raíces en matrices de sentido de epistemes propias. Tal ocurre para las nociones de velocidad y tiempo de la matemática del cambio. Una didáctica crítica es desafiada a deconstruirlos, desentrañando su presencia en el sentido común del estudiantado y en los saberes escolares de los que debe apropiarse éste, de modo de proporcionar antecedentes para diseñar y validar puentes de diálogo entre estos cuerpos de saberes. Para colaborar en esta línea, se presentan matrices de sentido para las nociones de velocidad y de tiempo obtenidas en investigaciones de la Matemática del Cambio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

¿En qué pensamos cuando citamos a Gulliver? Seguro que en proporciones. El trabajo nos va a mostrar la riqueza que posee este libro en la relación de la matemática con otras disciplinas como es la literatura, o como la música entre otros temas. Todo el material para incorporar en las aulas es de tal magnitud que nos preguntaremos ¿por qué no lo usamos y lo aprovechamos con nuestros alumnos? Se propone tomar distintos párrafos del libro y trabajar las situaciones que se plantean con longitudes, perímetros, superficies, volúmenes, medidas no convencionales, sistemas de coordenadas, razones, figuras y cuerpos geométricos, relaciones trigonométricas para llevar al espacio áulico con nuestros alumnos dichas actividades, donde veremos la riqueza de esta obra literaria con nuestra asignatura y otras.