4 resultados para COMPORTAMIENTO
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
En este artículo se reportan los resultados de una investigación que explora las concepciones alternativas de profesores y estudiantes de bachillerato acerca del comportamiento variacional de funciones. Para tal exploración se diseñó un cuestionario en el que se usan los sistemas de representación verbal, gráfico y analítico. En especial se exploraron concepciones relativas al comportamiento variacional de funciones [v. gr: Para qué x, f´(x)>0], comportamiento variacional y signo simultáneamente [v. gr: Para qué x se cumple que: f´(x)>0 y f(x)<0] y las relativas a los procesos de reversibilidad: [v. gr: Dada f´(x) esbozar f(x) y viceversa]. Los resultados indican que una cantidad significativa de encuestados, creen que f(x)<0 si su gráfica está en el semieje negativo de las x; consideran a f´(x) como asociada a un punto y no al comportamiento de f(x); la mayoría se muestra imposibilitado para transferir información variacional de la gráfica de f´(x) a f(x).
Resumo:
En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.
Resumo:
El objetivo de este trabajo es el de presentar una aplicación, llevada a cabo en un centro de enseñanza secundaria, de un modelo de decisión diseñado para situaciones de toma decisiones con múltiples expertos con información espero que en concreto dicho modelos utilizados para clasificar, de mayor a menor grado de influencia, un conjunto de posibles causas del mal comportamiento de los estudiantes en el aula, de acuerdo con las opiniones de un grupo de profesores de dicho centro.
Resumo:
En este artículo se reportan los resultados de una investigación que explora las concepciones alternativas de profesores de matemáticas de bachillerato acerca del comportamiento de funciones. Para tal exploración se diseñó un cuestionario en el que se usan los sistemas de representación verbal, gráfico y analítico. En especial se exploraron concepciones relativas al comportamiento variacional de funciones [v. gr: Para qué x, f'(x)>0], comportamiento variacional y signo simultáneamente [v. gr: Para qué x se cumple que: f'(x)>0 y f(x)<0] y las relativas a los procesos de reversibilidad: [v. gr: Dada f(x) esbozar f(x) y viceversa]. Los resultados indican que una cantidad significativa de profesores, creen que f(x)<0 si su gráfica está en el semieje negativo de las x; consideran a f'(x) como asociada a un punto y no al comportamiento de fix); la mayoría se muestra imposibilitado para transferir información variacional de la gráfica de f"(x) a f(x).