3 resultados para Barreras mentales y arquitectónicas
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
Partiendo del uso de la palabra vertical en las clases de matemáticas y de las confusiones habituales de los alumnos en torno al concepto de altura de un triangulo, vamos a exponer algunas reflexiones acerca de cuestiones de lenguaje, de errores de alumnos con algunas explicaciones de sus orígenes, de imágenes mentales y esquemas conceptuales de los estudiantes y del papel de las definiciones en el aprendizaje de las matemáticas.
Resumo:
Se desarrolla la noción de razonamiento covariacional y se propone un marco conceptual para describir las acciones mentales involucradas al aplicar razonamiento covariacional cuando se interpretan y representan funciones asociadas a eventos dinámicos. Se reporta la habilidad para razonar sobre cantidades covariantes en situaciones dinámicas, de estudiantes de alto desempeño en un curso de cálculo. El estudio reveló que ellos eran capaces de construir imágenes de la variable dependiente de una función que cambia simultáneamente con el cambio imaginado de la variable independiente, y en algunas ocasiones eran capaces de construir imágenes de la razón de cambio para intervalos contiguos del dominio de una función. Sin embargo, al parecer, tuvieron dificultad para formar imágenes de una razón cambiante de manera continua y no pudieron representar con exactitud o interpretar los puntos de inflexión ni la razón creciente y decreciente para funciones asociadas a situaciones dinámicas. Estos hallazgos sugieren que el currículo y la instrucción deberían aumentar el énfasis en el cambio que debe darse en los alumnos de una imagen coordinada de dos variables que cambian simultáneamente a una imagen coordinada de razón de cambio instantánea con cambios continuos en la variable independiente para funciones asociadas a situaciones dinámicas.
Resumo:
A partir de un estudio en proceso con profesores del nivel medio sobre errores en el uso de expresiones numéricas que contienen exponentes y radicales se propone una forma de enseñanza basada en recursos de visualización usados en la graficación de funciones. Además de reconocer la visualización como la habilidad de los sujetos para formar y manipular imágenes mentales se acepta como la habilidad para trazar diagramas apropiados para representar un concepto matemático o un problema. Son reconocidos el valor y la importancia de las imágenes visuales, en los diagramas y de otras herramientas visuales en los procesos heurísticos, para el descubrimiento, en la enseñanza de la matemática. Se propone una forma integral de abordar el aprendizaje de exponentes y radicales que consideran recursos visuales, numéricos y algebraicos para obtener sus propiedades. La graficación de funciones que comprenden formas de expresiones con exponentes y radicales, realizada por puntos, por intervalos y en forma global, favorece el análisis de la forma en que cambian las variables e ilustra el dominio de definición de las expresiones algebraicas. Del análisis de las representaciones gráficas se obtienen las propiedades de expresiones numéricas que incluyen exponentes y radicales definidas tanto en los números reales como en los complejos. Utilizando el álgebra de estas curvas se obtienen otras propiedades numéricas. Se hace uso de la calculadora graficadora y la computadora para obtener las gráficas de las funciones y para verificar las propiedades numéricas que se establecen.