4 resultados para Al-Si casting alloys
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El trabajo tiene como objetivo mostrar la forma y los resultados de aplicar tres estrategias cognitivas en la enseñanza de conceptos matemáticos y cómo estas posibilidades de enseñanza mejoran los niveles de razonamiento matemático y por ende las posibilidades de racionalizar problemas de las matemáticas, de otras ciencias y de la vida cotidiana. Presenta el marco teórico teniendo como base para este el cognitivismo como base del desarrollo del pensamiento y los enfoques cubano de la elaboración de conceptos, la enseñanza para la comprensión y la pedagogía conceptual. El razonamiento se ha definido como el desarrollo de los procesos de pensamiento aplicados a problemas matemáticos y los conceptos como construcciones abstractas de los sujetos. Se muestran las tres intervenciones realizadas en la Institución Educativa Normal Superior de Medellín de manera general, en uno de los dos conceptos trabajados. Los resultados permiten determinar que el mejoramiento del razonamiento matemático puede ser mejorado si las formas de trabajo en el aula están acordes con la manera como se define la forma en que los estudiantes aprenden. La ponencia es un acercamiento a un tema de interés para la investigación, el mejoramiento de la calidad en el pensar de nuestros estudiantes.
Resumo:
Este trabajo tuvo por objetivo determinar lo que han comprendido sobre ecuaciones algebraicas los alumnos, al finalizar la escuela secundaria e ingresar en la universidad. Para ello, analizamos las producciones escritas de 55 alumnos aspirantes a ingresar a una carrera de nivel universitario, posicionándonos en el Enfoque Ontosemiótico del conocimiento y la instrucción matemática, como marco teórico y metodológico de la Didáctica de la Matemática. Analizar la comprensión que tienen los alumnos sobre las ecuaciones, nos llevó a determinar si reconocen el campo de problemas en que se involucra este objeto matemático, aplican y recuerdan (implícitamente en la mayoría de los casos) los conceptos, propiedades y procedimientos que se requieren para llevar a cabo exitosamente las tareas, y utilizan lenguaje y argumentos apropiados en sus explicaciones. Como resultado final, obtuvimos una aproximación a la configuración cognitiva de cada estudiante, lo que permitió valorar la comprensión que tienen sobre el objeto matemático en cuestión.
Resumo:
Tres semanas después de recibir la enseñanza de probabilidad, diez estudiantes de un bachillerato tecnológico fueron seleccionados para desarrollar una actividad extra-aula experimental, fundamentada en la aproximación de la frecuencia relativa a la probabilidad. Se utilizaron hojas de control y se videograbó la sesión. Inicialmente los estudiantes lanzaron volados individualmente y después se organizaron en equipos para analizar sus datos. En la interacción social en dos equipos se manifestó la confusión entre los conceptos de frecuencias relativa y absoluta, y se observó la subordinación de ideas de los miembros ante un líder conceptual. Los estudiantes en un inicio confundieron los valores de la variable aleatoria con el espacio muestra, lo cual corrigieron posteriormente; si bien expresaron una aproximación intuitiva a la ley de los grandes números, no lograron progresar en ella. En general los estudiantes se mostraron dubitativos al contestar a las preguntas de las hojas de control, a pesar del poco tiempo transcurrido desde la enseñanza.
Resumo:
En este artículo se reportan los resultados de una investigación que explora las concepciones alternativas de profesores y estudiantes de bachillerato acerca del comportamiento variacional de funciones. Para tal exploración se diseñó un cuestionario en el que se usan los sistemas de representación verbal, gráfico y analítico. En especial se exploraron concepciones relativas al comportamiento variacional de funciones [v. gr: Para qué x, f´(x)>0], comportamiento variacional y signo simultáneamente [v. gr: Para qué x se cumple que: f´(x)>0 y f(x)<0] y las relativas a los procesos de reversibilidad: [v. gr: Dada f´(x) esbozar f(x) y viceversa]. Los resultados indican que una cantidad significativa de encuestados, creen que f(x)<0 si su gráfica está en el semieje negativo de las x; consideran a f´(x) como asociada a un punto y no al comportamiento de f(x); la mayoría se muestra imposibilitado para transferir información variacional de la gráfica de f´(x) a f(x).