5 resultados para órbitas periódicas

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realizar una teselación del plano consiste en «pavimentarlo» completamente con ayuda de formas planas de dimensiones finitas. El término proviene del Latín tesellam, o pieza cuadrada de mármol, piedra. etc.. que entraba en la composición de pavimentos de mosaico romanos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presentan una serie de actividades realizadas para el 2° ciclo de ESO, BUP y Bachillerato LOGSE, en las que se quiere resaltar la conexión entre las funciones periódicas y diversos ejemplos de ondas. Aprovechando algunos equipos electrónicos se consigue hacer evidente el significado de algunas operaciones sobre funciones como la suma, el producto por un número, la composición de una función lineal con una función sinusoidal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo aporta elementos que robustecen la socioepistemología propuesta sobre lo periódico en la que la predicción es la práctica asociada a la construcción del conocimiento matemático. Además de trabajar en un contexto de funciones periódicas distancia-tiempo, se abordan otros contextos como las sucesiones periódicas de números y de figuras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La idea del artículo es presentar las pruebas del teorema de Liouville sobre funciones enteras. En este trabajo recalcamos dos importantes aplicaciones, una en la demostración del teorema fundamental del álgebra y otra en el área de las aplicaciones conformes. El presente contiene una breve nota histórica de la vida de Joseph Liouville y su trabajo. También contiene la version del teorema de Liouville para funciones doblemente periódicas, funciones armónicas y aplicaciones cuasiconformes.