3 resultados para (Pb, La)TiO3
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
La incorporación en la vida cotidiana de las nuevas tecnologías de la información y la comunicación ha significado un cambio radical en la forma de desarrollar el proceso de enseñanza y aprendizaje en las diferentes disciplinas y niveles escolares. En este sentido, el software de geometría dinámica “Cabri Géomètre II Plus” es un programa computacional de fácil manipulación, amigable y de rápido aprendizaje, que permite a los estudiantes visualizar, descubrir, conjeturar y/o comprobar propiedades que se deseen trabajar. El presente artículo tiene como finalidad mostrar actividades en el tema de transformaciones isométricas y que se pueden desarrollar con el uso de Cabri II Plus, y que permiten el desarrollo del pensamiento geométrico.
Resumo:
Este es un estudio de un caso acerca de las representaciones de números racionales en la recta numérica hechas a mano y utilizando un programa interactivo de una alumna de nivel medio superior. En un principio las representaciones de la alumna mostraron una clara comprensión de cómo representar el orden entre diferentes números en la recta numérica, pero no cómo representar correctamente las distancias entre ellos. La forma de representación utilizada (decimales o fracciones) también fue importante para que ella pudiera o no mostrar su comprensión de las distancias entre diversos números racionales. El estudio muestra el pensamiento de la alumna, sus dificultades y avances, a través de las interacciones con el entrevistador y el programa de computadora.
Resumo:
Con el propósito de superar algunas dificultades de los profesores en la integración de tecnologías en la enseñanza de las matemáticas, se presenta una secuencia de análisis de las trasformaciones geométricas de la función exponencial natural, definida por f(x)=e^ax, que se apoya en el uso del GeoGebra. Tal secuencia permite caracterizar familias de curvas asociadas a la expresión anterior, a partir del análisis de las transformaciones geométricas “deformación” y “reflexión” experimentadas por estas curvas tras la variación del parámetro a. En el diseño de la secuencia se tomó en cuenta aspectos de teóricos, instrumentales y didácticos, que se consideran pertinentes para realizar el análisis. El uso de esta secuencia favorece el desarrollo de las capacidades para la integración eficiente de las tecnologías en la enseñanza de la Matemática.