149 resultados para Geometría y Topología
Resumo:
Para conocer cómo están de conocimientos matemáticos elementales los alumnos que acceden por primera vez en las diplomaturas de maestro a la materia de matemáticas, se les han aplicado las pruebas de diágnóstico para alumnos de sexto curso de primaria de las comunidades autónomas de Murcia y Madrid. La muestra la forman alumnos de las universidades de Murcia, La Laguna y Oviedo y de varias especialidades. Los resultados se analizan por ítem, por variables de corte, se efectúa un análisis descriptivo e inferencial y se comparan los resultados de las dos pruebas con los obtenidos por los alumnos de sexto curso de primaria.
Resumo:
Cuzco, Ámsterdam: ciudades reales, visibles y circulares como Bram, en Francia, y la Connaught Place de Nueva Delhi, en India. La retícula de calles rectilíneas, ortogonal o no, es a la vez huella y símbolo de la forma urbana. En ocasiones inspira nombres numéricos para sus calles. En Nueva York, desde el sur de Manhattan hasta el Bronx, las calles paralelas al eje E-O se ordenan y nombran según los números naturales (de la 1st a la 242th street). De igual modo, las avenidas perpendiculares que discurren N-S van de la 1a a la 11a, comenzando por el Este. No tan extensa es la retícula de Mandalay, en Myanmar, donde 90 de las calles N-S están numeradas de Este a Oeste, y 44 de sus perpendiculares de Sur a Norte. En la retícula de Miramar (Argentina) las calles en una dirección reciben nombres pares; las otras, impares. No es extraño que en ámbitos tan geométricos como los de esas ciudades nombre y número se confundan.
Resumo:
Para conocer un todo no es necesario el conocimiento exhaustivo de cada uno de los elementos que lo componen. Basta con determinar sus elementos fundamentales y saber qué leyes determinan la relación entre ellos y los demás. Solamente un todo pequeño (finito) puede conocerse por completo, elemento a elemento. Los todos más vastos (infinitos), jamás. Kublai se da cuenta de que no hay otro modo de conocer conjuntos tan grandes. El conjunto de los números naturales se conoce a partir de un elemento (uno) y de una ley de formación (uno más uno: dos). Un espacio vectorial se conoce a partir de los vectores de su base y del modo en que operan (suman y multiplican) entre ellos y con los escalares de un cuerpo K.
Resumo:
Este artículo describe una actividad en la cual los alumnos adquieren algunos conceptos básicos sobre topología de forma intuitiva. Teniendo en cuenta su principal ventaja, el aprendizaje cooperativo, el puzzle de Aronson es la herramienta que proporciona la metodología más conveniente para desarrollar esta experiencia.
Resumo:
No es la primera vez que Calvino localiza un lugar mediante un ángulo y una distancia. Unas coordenadas polares referenciadas en los puntos cardinales y una distancia medida con unidad de tiempo.
Resumo:
El proyecto CUBE es una propuesta de trabajo en el aula de Matemáticas donde a partir de la película CUBE (Vincenzo Natali, 1997) se desarrollan una serie de actividades introductorias a la Geometría Analítica tridimensional y a la visualización espacial geométrica. Consta de dos partes, una relativa al guión de la película y otra derivada hacia el desarrollo del currículo de 4º de ESO en el bloque de Geometría. Las características de la propuesta hacen que se presente como un proyecto abierto a la interdisciplinariedad e idóneo para la práctica del aprendizaje significativo en un contexto de prácticas procedimentales.
Resumo:
¿A qué recuerda ese residuo de infelicidad (imperfección, inexactitud) que jamás llega a compensar la piedra más preciosa (fórmula, igualdad) y cuyo conocimiento determina el número exacto de quilates (perfección, igualdad) a la que debe aproximarse el diamante final (sucesión, serie, límite)? Sólo conociendo bien ese residuo evitaremos errores de cálculo, errores en la igualdad.
Resumo:
El próximo mes de junio cerraré, al menos por el momento, esta sección y me gustaría despedirme con el relato de una historia muy especial. A lo largo de casi treinta años de profesión he ido guardado en un arcón, como los piratas de antaño, un montón de joyas encontradas en mis travesías matemáticas, logrando acumular un botín bastante suculento. Una de mis piezas favoritas es esta historia, una historia que ojalá me hubiesen contado cuando me enseñaron por primera vez los rudimentos del álgebra lineal. De hecho, si hoy tuviese que impartir clase de álgebra lineal en bachillerato o en un primer curso de cualquier carrera científica o técnica y se me permitiese hacerlo a mi manera, articularía mis clases en torno a esta historia. Sus distintos episodios, todos ellos verídicos, me han ido llegando a través de los años de la mano del matemático Mario Fernández Barberá, del escultor José Luis Alexanco y del poeta Ramón Mayrata.
Resumo:
Por quinta vez puso cuatro motas de tinta en el papel, les puso nombres (A, B, C, D) y los unió con segmentos para formar un cuadrilátero. Luego señaló los puntos medios de sus cuatro lados y los conectó formando otro cuadrilátero (P, Q, R, S). Ahí estaba el problema. Ese cuadrilátero interior siempre resultaba ser un paralelogramo pusiera como pusiera los cuatro puntos originales. ¿Acaso había orden en el caos? Por un momento pensó que quizá había truco, que tal vez sucedía así porque la gente ponía los puntos de formas similares. Pero ya había probado configuraciones muy raras, incluso dejó que los segmentos del cuadrilátero ABCD se interceptasen, y siempre obtenía idéntico resultado. No, lo que parece cumplirse para cualquier caso no es ningún truco, sino un teorema que demostrar.
Resumo:
La primera parte se dedicó al concepto de fractal, su dimensión y la generación de algunos tipos de fractales (determinista lineales y sistemas de funciones iteradas) y se hizo un estudio exhaustivo del triángulo de Sierpinski. Continuamos aquí con otras formas de generar fractales.
Resumo:
En este trabajo se ofrece una visión general de la geometría fractal y sus aplicaciones. Se hace un análisis de sus posibilidades didácticas mediante una recopilación, síntesis y adaptación de sus principales conceptos, de forma que sean adsequibles a los alumnos de secundaria. Consta de dos partes, este primer artículo se dedica fundamentalmente al concepto de fractal, su dimensión y la generación de algunos tipos de fractales, a través de actividades pensadas especialmente para los alumnos de esa etapa.
Resumo:
Fue el último en poseerla quien, instantes antes de perderla para siempre y movido por una presunción ya del todo instintiva, bautizó la ciudad con el nombre de Memoria grafiando esa palabra en las fachadas de las avenidas. Presumió que en un futuro, muy lejano quizá pero alcanzable, y a pesar de los trazos ya inseguros de su escritura afectada, alguien podría leerla y recobrar la lucidez.
Resumo:
Una vez acordado el precio nos ponemos en camino. Son las ocho de la mañana y hace un día espléndido. El cielo es una sábana azul sin mácula y el verdor intenso que nos rodea justo al abandonar las bulliciosas calles de Ternate refleja la luz del astro en multitud de tonalidades deslumbrantes. La carretera serpentea arriba y abajo perfilando la costa con el mar a la derecha. Después de pasar por diversos pueblos y atravesar un bosque espeso la vegetación desaparece de repente al llegar a Batu Angus (roca abrasada), una cicatriz colosal e imborrable, un río pétreo vestigio de la erupción del Gamalama en el siglo XVIII.
Resumo:
¿Dónde están las cosas? ¿Dónde estoy yo? Aquí. Estoy aquí y ahora. Doy un paso y ya no estoy, ni aquí ni ahora, sino más lejos, y después. ¿Qué distancia me separa de mí mismo? Ninguna, cero, nada. O cuarenta mil kilómetros, la cintura del planeta. O pi multiplicado por veinte mil millones de años luz, el perímetro del Universo, más o menos. O la longitud de la trayectoria de un vuelo imaginario y arbitrario que partiendo de mi, aquí y ahora, volviera a mí, aquí, pero después: ¿Un dedo? ¿Un metro? ¿El infinito?
Resumo:
En este artículo se presentan algunos resultados elementales que relacionan las cónicas regulares y las cónicas con centro con trapecio. La clave esta relación consiste en que si dibujamos segmento paralelo que pase por el punto en que se corta las dos diagonales del trapecio, la longitud de su segmento es la media armónica de las longitudes de las bases. También se mostraron otros resultados que están relacionados con la interpretación de la media vía el trapecio y su relación conciertos propiedades de las cónicas regulares a través de sus cuerdas focales.