143 resultados para Sistemas de funções
Resumo:
Frecuentemente, al iniciar el estudio de conceptos básicos del análisis matemático, nos encontramos con dificultades y errores relacionados con la división por cero. La necesidad de dar respuesta a esta problemática, da origen a este trabajo que retoma las respuestas dadas por un grupo de alumnos de la escuela media que constituyen las evidencias sobre las cuales se inicia el proceso de investigación que se encuentra en su primera etapa de realización y cuyos resultados parciales se exponen aquí. Se enmarca la tarea en la perspectiva socioepistemológica indagando en los orígenes y evolución de este conocimiento, analizando los alcances y efectos del discurso matemático escolar vigente en la educación media y contemplando las concepciones de los alumnos acerca del cero y la división construidas en ambientes escolarizados y no escolarizados.
Resumo:
Concebimos que la modelación de fenómenos es una práctica que está ligada a la construcción de conocimientos matemáticos y en este sentido se han realizado investigaciones entorno a su incorporación al contexto escolar. Sin embargo, el incorporar la experimentación en el aula de matemáticas conlleva dificultades, una de ellas es la carencia de material de laboratorio. El laboratorio virtual es un proyecto que intenta suplir la ausencia de un laboratorio físicamente, sin embargo, esta sustitución desencadena diferentes relaciones entre los actores. En este trabajo se pretende mostrar como es que un laboratorio simulado, podría contribuir a la incorporación a sistemas escolares concretos de diseños de aprendizaje basados en las prácticas sociales de modelación. Se da evidencia de cómo se desarrollan acciones e interacciones colaborativas alrededor del laboratorio virtual.
Resumo:
En este curso se pretende realizar análisis de funciones a partir de sus representaciones gráficas. Se parte del desarrollo de actividades de lectura, interpretación y construcción de gráficas de funciones sobre la base de un ambiente rico en significados visuales. Se desarrollarán actividades que requerirán procesos de conversión y tratamiento de diferentes sistemas semióticos de representación como el gráfico, verbal y analítico, pero predominantemente el gráfico. La validez de las argumentaciones que permitirán dar respuesta a los cuestionamientos incluidos en estas actividades, será de naturaleza eminentemente visual.
Resumo:
Este es un estudio de un caso acerca de las representaciones de números racionales en la recta numérica hechas a mano y utilizando un programa interactivo de una alumna de nivel medio superior. En un principio las representaciones de la alumna mostraron una clara comprensión de cómo representar el orden entre diferentes números en la recta numérica, pero no cómo representar correctamente las distancias entre ellos. La forma de representación utilizada (decimales o fracciones) también fue importante para que ella pudiera o no mostrar su comprensión de las distancias entre diversos números racionales. El estudio muestra el pensamiento de la alumna, sus dificultades y avances, a través de las interacciones con el entrevistador y el programa de computadora.
Resumo:
Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.
Resumo:
En este artículo se reportan los resultados de una investigación que explora las concepciones alternativas de profesores y estudiantes de bachillerato acerca del comportamiento variacional de funciones. Para tal exploración se diseñó un cuestionario en el que se usan los sistemas de representación verbal, gráfico y analítico. En especial se exploraron concepciones relativas al comportamiento variacional de funciones [v. gr: Para qué x, f´(x)>0], comportamiento variacional y signo simultáneamente [v. gr: Para qué x se cumple que: f´(x)>0 y f(x)<0] y las relativas a los procesos de reversibilidad: [v. gr: Dada f´(x) esbozar f(x) y viceversa]. Los resultados indican que una cantidad significativa de encuestados, creen que f(x)<0 si su gráfica está en el semieje negativo de las x; consideran a f´(x) como asociada a un punto y no al comportamiento de f(x); la mayoría se muestra imposibilitado para transferir información variacional de la gráfica de f´(x) a f(x).
Resumo:
Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.
Resumo:
El propósito de esta investigación en curso es indagar sobre las representaciones que tienen estudiantes del nivel medio superior (secundaria y primer nivel universitario) acerca de nociones matemáticas variacionales, prestando especial atención a su forma de aprenderlas y buscando propiciar espacios de reflexión respecto de ellas, con el objeto de aportar información que sirva de base para la elaboración de diseños didácticos tendientes a mediar -en procesos de profundidad creciente- aprendizajes de nociones matemáticas variacionales, por ejemplo, la razón de cambio de una magnitud. Como técnica exploratoria consideramos el uso de bitácoras personales de reflexión de los estudiantes, para luego, en una segunda etapa, derivar en la construcción y aplicación de un cuestionario y la realización de entrevistas para triangular fuentes de información. En este artículo se reportan evidencias de la primera etapa, provenientes de las bitácoras personales, en el contexto de un curso de cálculo inicial.
Resumo:
Los obstáculos para operar con la visualización por parte de los estudiantes, a la hora de estudiar lo que varía, muestran la importancia de promover el desarrollo de una “inteligencia visual”. En especial la construcción de gráficas, dado que es una importante herramienta que permite a los estudiantes realizar una actividad matemática escolar y por tanto desarrollar un pensamiento matemático. Herramienta didáctica que ha ido, desde el surgimiento de la tecnología digital, cobrando mayor importancia en la investigación tanto matemática como en didáctica de las matemáticas. A modo de ilustración en el comportamiento tendencial (Cordero, 2001) de las funciones, un estudiante aprende a “identificar” coeficientes en la función, a “reconocer” patrones de comportamientos gráficos, a “buscar” tendencias en los comportamientos y a "relacionar” funciones.
Resumo:
Esta es una propuesta didáctica que consta de una serie de actividades relacionadas con la representación gráfica de ciertas funciones y su vinculación con una representación en un contexto físico o icónico (dibujo de un recipiente). Las actividades son de dos tipos: Dadas las formas de los recipientes, bosquejar las gráficas correspondientes, teniendo en cuenta que la variable independiente es la altura del líquido y la variable dependiente es el área de la superficie del líquido (o bien el volumen del líquido dentro del recipiente); dadas las gráficas del área de la superficie del líquido versus altura, bosquejar los posibles recipientes correspondientes. Ambas actividades son diseñadas para propiciar el cambio de un sistema de representación a otro (Janvier, 1987; Duval, 1992, 1999; Hitt, 1992).
Resumo:
A partir de un estudio en proceso con profesores del nivel medio sobre errores en el uso de expresiones numéricas que contienen exponentes y radicales se propone una forma de enseñanza basada en recursos de visualización usados en la graficación de funciones. Además de reconocer la visualización como la habilidad de los sujetos para formar y manipular imágenes mentales se acepta como la habilidad para trazar diagramas apropiados para representar un concepto matemático o un problema. Son reconocidos el valor y la importancia de las imágenes visuales, en los diagramas y de otras herramientas visuales en los procesos heurísticos, para el descubrimiento, en la enseñanza de la matemática. Se propone una forma integral de abordar el aprendizaje de exponentes y radicales que consideran recursos visuales, numéricos y algebraicos para obtener sus propiedades. La graficación de funciones que comprenden formas de expresiones con exponentes y radicales, realizada por puntos, por intervalos y en forma global, favorece el análisis de la forma en que cambian las variables e ilustra el dominio de definición de las expresiones algebraicas. Del análisis de las representaciones gráficas se obtienen las propiedades de expresiones numéricas que incluyen exponentes y radicales definidas tanto en los números reales como en los complejos. Utilizando el álgebra de estas curvas se obtienen otras propiedades numéricas. Se hace uso de la calculadora graficadora y la computadora para obtener las gráficas de las funciones y para verificar las propiedades numéricas que se establecen.
Resumo:
Se presentan las ideas centrales y las técnicas del análisis de contenido que corresponden al módulo 2 de MAD. El módulo 2 de MAD 2 tiene como finalidad contribuir al conocimiento teórico y técnico de los profesores en formación sobre el análisis de contenido. Esta finalidad se concreta por medio de cuatro actividades en las que los profesores en formación tienen la oportunidad de dar sentido y utilizar, para el análisis de un tema de las matemáticas escolares, los cuatro organizadores del currículo que acabamos de mencionar. Además, tienen la oportunidad de recolectar y organizar toda la información producida para estos organizadores del currículo en un balance final.
Resumo:
El currículo de estadística en el sistema escolar sugiere desde la infancia un cambio metodológico de enseñanza hacia el desarrollo de los aspectos intuitivos de lo estocástico en situaciones de incertidumbre. El Taller tiene dos propósitos, presentar actividades de experimentos aleatorios con dispositivos manipulativos, algebraico y computacional para familiarizarse con la noción de distribución de probabilidad binomial. También, ilustrar que su enseñanza en la educación secundaria por medio de variadas representaciones proporciona una mayor potencia en el cálculo de probabilidades y la introducción de las ideas de parámetro, estadístico, simulación, variable aleatoria y aproximación.
Resumo:
En este trabajo se presenta un modelo para caracterizar el razonamiento estadístico de los estudiantes al interpretar la información que es representa por el gráfico de gajas. El origen de dicho modelo se motiva en una experiencia de aula que considera y aplica los resultados obtenidos en una investigación realizada como trabajo de grado de la Maestría en Docencia de las Matemáticas y adscrita a la línea de investigación en Educación Estadística de la Universidad Pedagógica Nacional en el año 2009. Esta investigación pretende categorizar el razonamiento estadístico de un grupo de estudiantes de secundaria en un colegio público de la ciudad de Bogotá. Para obtener dicha categorización se propuso comparar conjuntos de datos representados mediante gráficos de caja. y, se empleó la teoría de clasificación conocida como taxonomía SOLO, la cual a su vez fue articulada con siete elementos de razonamiento sugeridos por los autores del presente trabajo.
Resumo:
Este estudio de caso hace parte de una investigación que se está realizando con estudiantes sordos de grados octavo y décimo, con el propósito de lograr la comprensión/construcción del concepto de función, desde las dimensiones epistemológicas, didáctica y cognitiva. El estudio se fundamenta en el marco teórico de los registros de representación semiótica y la metodología de la Ingeniería didáctica, apoyado en el diseño, desarrollo e implementación de un software.