72 resultados para Laboratorio de geometría
Resumo:
En este trabajo se ofrece una visión general de la geometría fractal y sus aplicaciones. Se hace un análisis de sus posibilidades didácticas mediante una recopilación, síntesis y adaptación de sus principales conceptos, de forma que sean adsequibles a los alumnos de secundaria. Consta de dos partes, este primer artículo se dedica fundamentalmente al concepto de fractal, su dimensión y la generación de algunos tipos de fractales, a través de actividades pensadas especialmente para los alumnos de esa etapa.
Resumo:
En este artículo se presentan algunas experiencias sobre la aproximación intuitiva en geometría y sus implicaciones en el cálculo aproximado del número pi en la ESO. El proceso se gradúa en torno a cuatro actividades. En las dos primeras se aproxima experimentalmente el número Pi y se pretende descubrir el grado de móviles de los alumnos para enfrentarse, desde el punto de vista intuitivo, a los procesos geométricos de aproximación. En las dos últimas se hace una estimación de Pi, en un caso encontrando una secuencia de números irracionales convergente a ese número, y el otro, a partir de una simplificación del método utilizado por Arquímedes, que permite además dar una demostración diferente de la habitual.
Resumo:
En este trabajo pretendemos mostrar que la presunta alternativa entre geometría sintética y geometría analítica es, en realidad, una falsa alternativa fruto de un análisis epistemológico superficial. Proponemos una forma de conectar, en la enseñanza de la geometría en secundaria, las técnicas sintéticas con las analíticas a fin de poner de manifiesto su complementariedad.
Resumo:
El objetivo de este artículo es concienciarnos de la importancia de aprovechar los conocimientos de geometría que poseen nuestros alumnos para explicar el concepto de probabilidad. Queremos demostrar lo beneficioso que, desde un punto de vista didáctico, puede ser la unión de la geometría y la probabilidad
Resumo:
En la entrega del N° 35 nos preguntábamos si la evolución histórica del problema nos podría servir de guía para planificar una actuación en clase, siguiendo el modelo Van Hiele. ¿Cómo describir este modelo en pocas líneas?
Resumo:
Este articulo ilustra cómo un problema ambiguamente formulado admite diferentes lecturas y soluciones, permitiendo así distintas aproximaciones según el nivel y las capacidades del alumno. El problema de optimización es explorado en un entorno de geometría dinámica (The Geometer's Sketchpad). Esta aproximación geométrica facilita la formulación de conjeturas y su prueba visual, allanando el camino a la prueba analítica, si ésta se considera pertinente.
Resumo:
Me gustaría empezar haciendo un bosquejo de mis propias experiencias en el aprendizaje y enseñanza de la geometría. A lo largo de mi educación secundaria me enseñaron la geometría como una materia separada de la aritmética y del álgebra, a cargo de profesores diferentes y no formando parte de una asignatura integra llamada matemáticas.
Resumo:
En la historia de las matemáticas no todas las curvas han sido consideradas dignas de figurar en el reino de la geometría. La matemática griega habían serios recelos con las llamadas curvas metálicas, generadas por composición de movimientos.
Resumo:
En la presente contribución intentamos evidenciar cómo la geometría a lo largo de toda su historia ha desempeñado un papel fundamental interactivo con la ciencia natural, en particular con la física, y más en concreto aún con la mecánica. En la primera parte esbozamos nuestra visión de esta intima interrelación desde el alba de la geometría en China, Mesopotamia y Egipto hasta nuestros días.
Resumo:
En este articulo relatamos una experiencia sobre simetría de las letras del abecedario, vivida con los alumnos de 1° y 3° de BUP, en la clase de matemáticas.
Resumo:
Propuesta para un planteamiento de la Geometría en la Enseñanza Secundaria Obligatoria (12-16), siguiendo las directrices del Diseño Curricular Base.
Resumo:
Este matemático polaco francés norteamericano gozó siempre de una gran reputación, que se acrecentó con el redescubrimiento de conceptos que condujeron a la dimensión fractal y a los fractales. ¿Existe una matemática que modela de manera acertada a ciertos procesos de la naturaleza? ¿Es sencilla esta matemática?
Resumo:
En el presente artículo se reportan los resultados de una investigación que clasifica las conceptualizaciones que tienen estudiantes de primer ingreso universitarios de Costa Rica en temas de geometría y sistemas de ecuaciones mediante el modelo SOLO Taxonómico (propuesto por Biggs & Collis, 1982). Inicialmente los estudiantes se ubican en los primeros niveles de razonamiento en los temas de geometría y en niveles intermedios en sistemas de ecuaciones, al final los estudiantes mostraron mejoría después de un curso introductorio de matemáticas.
Resumo:
La razón de esta propuesta, está fundamentada en brindar una exposición simple de una prueba de un teorema de geometría analítica, utilizado por nuestros estudiantes en la educación media y la educación media superior. Mi idea nació de la iniciativa de postular una demostración a un nivel básico, de tal forma que cualquier estudiante que conozca algunos principios generales de álgebra de polinomios, geometría analítica y trigonometría, pueda comprenderla sin mayor complicación.
Resumo:
No es fácil experimentar, visualizar y hacer conjeturas cuando estudiamos la geometría del espacio. Con los paquetes de geometría dinámica se abren nuevas posibilidades de exploración. Aunque la mayoría de los paquetes fueron diseñados para trabajar en dos dimensiones, es posible realizar ciertas construcciones que nos permiten el estudio en el espacio. Las construcciones están basadas en el dibujo en perspectiva y en la proyección cilíndrica.