54 resultados para Generalización
Sistema didáctico de la disciplina matemática con formato web en la carrera de ingenieria industrial
Resumo:
El proceso de preparación de los especialistas no puede dejarse al azar, las disciplinas de las diferentes carreras se deben organizar de tal forma que exista una documentación de cada una de ellas que recoja materiales tan importantes como: el programa analítico, las orientaciones metodológicas, los planes directores, los folletos auxiliares y las guias de estudio, entre otras; utilizando los recursos que brinda la informatización. De esta forma se propicia que el claustro, no sólo del departamento, sino de la carrera en general, tenga acceso a la documentación que conforma las diferentes disciplinas de la especialidad, fluyendo más rápidamente la interdisciplinaridad, pues cada disciplina tiene acceso a las experiencias de otras, amén de la gran importancia que esta forma de organización brinda a los profesores noveles, los cuales a través de estos materiales podrán nutrirse de las experiencias obtenidas en cursos anteriores. Con el presente trabajo, pretendemos poner a consideración de otros colegas, el montaje de la disciplina matemática para ingeniería industrial en un sitio web, la cual consta de cinco asignaturas, con la documentación respectiva de cada una de ellas así como de la disciplina en general.
Resumo:
El objetivo principal de este artículo es ofrecer recomendaciones para estudiar los cuadriláteros convexos tomando como punto de partida las potencialidades que brinda la operación clasificación de conceptos. Tales recomendaciones surgen del análisis de varios trabajos que se han publicado relacionados con el tema y de la experiencia de los autores en la utilización de procedimientos adecuados para la realización de las operaciones con conceptos en el proceso de enseñanza-aprendizaje de la Matemática en su país.
Resumo:
En este trabajo se presentan las experiencias desarrolladas con el objetivo de contribuir a la formación de habilidades para la resolución de problemas en estudiantes de primer año de la carrera de Licenciatura en Matemática. Concretamente, se presenta la propuesta de actividades a desarrollar dentro del contexto de la asignatura “Seminario de Problemas I", con la que se inicia el programa de la disciplina “Práctica Profesional del Matemático”, existente en el plan de estudio de la carrera en las universidades cubanas desde el curso 1990-91 (Plan de Estudio “C” de la carrera de Matemática). Uno de los propósitos del curso es recorrer, a partir de problemas físicos, geométricos, algebraicos, etc., diferentes etapas de la investigación matemática desde la formulación del problema; la obtención del modelo matemático (por ejemplo, determinar las raíces de una ecuación); los métodos de resolución (exactos y aproximados: numéricos y/o analíticos) y su implementación computacional; la utilización de técnicas para verificar la corrección de los resultados obtenidos (compatibilidad con las unidades de magnitud, estudio de casos limite, etc.) y su interpretación. Otro objetivo importante que persigue este curso es contribuir al desarrollo de hábitos de investigación científica mediante la orientación de un trabajo de curso sobre aspectos de la vida y obra de algún matemático. La exposición y defensa de los resultados de sus búsquedas, ante el colectivo de estudiantes, permite desarrollar sus habilidades de expresión oral y su formación cultural en la especialidad.
Resumo:
El propósito de este proyecto es facilitar el tránsito de los estudiantes desde la interpretación de la letra como objeto hasta la interpretación como número generalizado. El procedimiento seguido para el desarrollo de este proyecto fue el siguiente, se aplicó la prueba diagnóstica propuesta por Küchemann, a partir de los resultados de esta se hizo una clasificación haciendo un análisis global de la prueba y luego una mirada particular a cada uno de los ítems. Después de la clasificación se dispuso el diseño de talleres que permitieran superar algunas de las dificultades vistas a través de esta prueba; cada uno de los talleres podía tener una duración mayor de una clase o incluso una semana, al final de estos se sacaban conclusiones para evaluar la efectividad de los mismos. Las actividades, se basaron en encontrar patrones en una organización dada, con ello los estudiantes debían ilustrar la situación, responder unas preguntas guía y por último hallar una fórmula que les permitiera hallar la cantidad de objetos, en una posición o momento cualquiera.
Resumo:
Esta investigación fue la tesis de maestría de la autora, está basada en el estudio de las creencias de los alumnos del nivel medio superior con talento en las ciencias exactas. Fundamenta la influencia del sistema de creencias en el comportamiento humano y en especial en la resolución de problemas matemáticos. En su parte fundamental muestra cómo en la práctica pueden transformarse y/o formarse el sistema de creencias en los alumnos mediante diferentes actividades encaminadas a ello, dentro de la propia clase. Dentro de ellas el trabajo con los problemas, afrontamiento, relo, Prueba de desarrollo y otras. Obteniendo como resultado un mayor desempeño en la resolución de problemas, con la utilización de estrategias heurísticas y metacognitivas adecuadas, así como desarrollo del pensamiento. Para ello utilizamos la investigación-acción como método de investigación, como proceso educativo y como medio para adoptar decisiones. Los resultados de esta investigación ponen al servicio de los profesores un potente instrumento de transformación de la esfera motivacional valorativa para el caso de la solución de problemas matemáticos.
Resumo:
La problemática que hemos venido atendiendo en los últimos años, de nuestra labor docente y como investigadores, es el que los estudiantes de nivel superior no son reflexivos, es decir no conceptualizan los teoremas, leyes, axiomas o principios de los conocimientos matemáticos particularmente en situaciones de cálculo, ellos toman una actitud radicalmente pragmática y aprenden los procedimientos del cálculo en un nivel puramente algorítmico que es construido sobre imágenes y gráficas escasas (Dreyfus, 1990). Esto les impide realizar abstracciones que les permitan resolver problemas cuando se entienden a nuevas situaciones. Por lo anteriormente planteado, es preciso, establecer el tipo de acercamientos teóricos y metodológicos con los cuales contamos para lograr abordar la solución de la problemática planteada de manera exitosa y que tanto maestros como estudiantes crezcamos en y con la adquisición de los conocimientos matemáticos tan relevantes e importantes en nuestro presente histórico para el desarrollo social y cultural de las naciones.
Resumo:
La enseñanza de las matemáticas apoyada en el uso de software de geometría dinámica como El Geómetra (The Geometer’s Sketchpad) puede hacerse mucho más significativa y fomentar de manera mucho más eficiente un pensamiento reflexivo y un razonamiento deductivo en nuestros alumnos, no importa el grado en que se encuentren. Ahora bien, con la versión 4.0 de Sketchpad es posible enseñar de una manera más amable no sólo la geometría, sino cualquier rama de las matemáticas, desde la aritmética hasta el cálculo, pasando por el álgebra y la geometría analítica. En este artículo se verán algunas actividades con Sketchpad cuya intención es ilustrar el uso de la exploración, visualización y la demostración para desarrollar el entendimiento matemático y el razonamiento reflexivo en nuestros alumnos.
Resumo:
Se presentan los resultados del estudio relacionado con la tercera derivada desde la aproximación socioepistemológica. El análisis del discurso matemático escolar contenido en los libros de Análisis ha permitido observar la introducción de las derivadas sucesivas, y en consecuencia a la tercera derivada, como un proceso iterativo que se aplica a funciones que se generan al derivar una función. Sin embargo, esta presentación minimiza las relaciones de variación que vinculan a la derivada primera con las de orden superior. Con el propósito de identificar propiedades gráficas de las funciones en las que entra en juego el pensamiento y lenguaje variacional, se analizaron los vínculos de la curvatura y las variaciones de tercer orden. Culminando en el diseño e implementación de una secuencia fundamentada en las variaciones del círculo de curvatura.
Resumo:
Este reporte trata sobre una investigación realizada en la Universidad de Camagüey que se planteó como objetivo la elaboración de un programa analítico de la asignatura álgebra lineal y geometría analítica para la carrera de Ingeniería Mecánica que permitiera elevar la eficiencia del mismo para la solución de problemas y tareas docentes por parte de los estudiantes. Los métodos empleados fueron tanto teóricos como empíricos, mediante ellos y a partir del problema considerado se constató que la concepción existente del Programa Analítico de la asignatura no es adecuado para asegurar el balance entre su nivel de generalización teórica y la solución de problemas con el consecuente desarrollo de habilidades prácticas profesionales e investigativas para garantizar el encargo social. En la investigación se demostró que la articulación teórica y práctica empleando el enfoque sistémico y la teoría de la actividad, permitió dar base teórica a la integración de los temas del álgebra lineal y geometría analítica. Además se rediseñó el programa de la asignatura y su aplicación contribuyó a elevar la eficiencia del proceso de enseñanza-aprendizaje de la misma.