47 resultados para Propiedades
Resumo:
Diversos estudios sobre tecnologías educativas para la docencia superior, formulan la participación activa y aprendizajes significativos, complementado con trabajo interactivo y autoestima positiva. Investigadores en educación afirman que “Construimos significados cuando relacionamos las nuevas informaciones con nuestros esquemas previos de comprensión de la realidad”. Por tanto, se propone incluir los contenidos dentro de situaciones naturales que impliquen el enfrentamiento del alumno con tareas que se asemejen a las complejas situaciones de la vida real y profesional. Esto apoyado con tecnología, donde el objetivo sea desarrollar actividades que permitan al alumno descubrir relaciones, propiedades, y donde desarrolle la capacidad de análisis, creatividad y una actitud crítica hacia los resultados.
Resumo:
A partir de un estudio en proceso con profesores del nivel medio sobre errores en el uso de expresiones numéricas que contienen exponentes y radicales se propone una forma de enseñanza basada en recursos de visualización usados en la graficación de funciones. Además de reconocer la visualización como la habilidad de los sujetos para formar y manipular imágenes mentales se acepta como la habilidad para trazar diagramas apropiados para representar un concepto matemático o un problema. Son reconocidos el valor y la importancia de las imágenes visuales, en los diagramas y de otras herramientas visuales en los procesos heurísticos, para el descubrimiento, en la enseñanza de la matemática. Se propone una forma integral de abordar el aprendizaje de exponentes y radicales que consideran recursos visuales, numéricos y algebraicos para obtener sus propiedades. La graficación de funciones que comprenden formas de expresiones con exponentes y radicales, realizada por puntos, por intervalos y en forma global, favorece el análisis de la forma en que cambian las variables e ilustra el dominio de definición de las expresiones algebraicas. Del análisis de las representaciones gráficas se obtienen las propiedades de expresiones numéricas que incluyen exponentes y radicales definidas tanto en los números reales como en los complejos. Utilizando el álgebra de estas curvas se obtienen otras propiedades numéricas. Se hace uso de la calculadora graficadora y la computadora para obtener las gráficas de las funciones y para verificar las propiedades numéricas que se establecen.
Resumo:
En este trabajo se presentan y analizan los problemas propuestos en el concurso matemático El inGENIO no tiene edad, que tuvo lugar en nuestro colegio y en el que se enfrentaron alumnos de todas las edades, desde infantil hasta bachillerato. Cada problema iba relacionado con un paso para construir una estrella de papel con interesantes propiedades matemáticas. El equipo que resolvía todos sus ejercicios aprendía a crear estrellas.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: “solo existen dos números mórficos, el número de oro y el número plástico”.
Resumo:
Este artículo se ha escrito con el objetivo de mostrar la superficie geométrica denominada banda de Möbius como herramienta para potenciar la motivación e interés de los alumnos, tanto de bachillerato como universitarios, en sus clases de Matemáticas. Esta superficie, que tiene varias propiedades muy curiosas, es en realidad un bucle girado, normalmente hecho de papel, fácilmente manipulable por los estudiantes. Para su construcción únicamente se necesitan lápiz, papel, pegamento y tijeras.
Resumo:
La convincente fuerza de las imágenes y su belleza artesanal son habitual y lamentablemente desaprovechadas en las aulas. Las pruebas visuales no demuestran -eso dice el rigor puritano- pero asientan cimientos, aportan elegancia plástica y ayudan a la motivación. Desde primaria hasta la universidad, la enseñanza de las matemáticas está planificada bajo un obsesivo punto de vista que prima lo general sobre lo particular. Sin embargo, una didáctica humanista, que permita al alumnado construir y diseñar, sólo es posible desde un buen conocimiento de las propiedades individuales de los objetos matemáticos.
Resumo:
Este trabajo pretende plasmar el estudio de las cónicas como formas geométricas que se pueden generar de múltiples formas y que verifican propiedades que son utilizadas en la vida cotidiana. Debido al nivel en el que se imparte este tema, 4º de ESO, nos hemos centrado en la distinción a partir de la generación y características de cada cónica. Para llevar a cabo esta tarea se han utilizado elementos manipulables, algunos de los cuales pueden ser generados por los propios alumnos, para asentar mejor en ellos las distintas definiciones y propiedades.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
En este trabajo presentamos los resultados de un cuestionario formado por cuatro problemas abiertos, a través de los cuales evaluamos la comprensión de la idea de media aritmética. Analizamos los componentes del significado que asigna una muestra de 53 alumnos de educación secundaria a este concepto, y, en particular, su comprensión de propiedades numéricas de este concepto.
Resumo:
Se proponen tres demostraciones sobre el valor de la potencia de un punto con respecto a una circunferencia. La primera utiliza el método de la geometría analítica, y las propiedades de las soluciones de la ecuación de segundo grado. La segunda se basa sólo en el Teorema de Pitágoras. Y, la tercera utiliza el álgebra de vectores. Por último, se da el resultado de la potencia de un punto con respecto a una elipse. Con esto se intenta suplir el hueco en los libros de texto, de nivel de Bachillerato, que no recogen una demostración general sobre la constancia de la potencia del punto con respecto a una circunferencia.
Resumo:
En este artículo se presenta una interesante propiedad de los triángulos isósceles, usando como apoyo técnicas y propiedades de geometría básica.
Resumo:
Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.
Resumo:
El objetivo de este trabajo es caracterizar la presentación de la regresión en los libros de texto españoles de Bachillerato. Para ello se analizan y clasifican los campos de problema, procedimientos, conceptos y propiedades asociados a la regresión en dieciséis libros de texto de Bachillerato utilizados en España, ocho de la modalidad de Ciencia y Tecnología, y ocho de la modalidad de Humanidades y Ciencias Sociales. En el caso de los conceptos, se estudia si su definición es operacional, estructural o mediante ejemplo. Los resultados indican que no hay grandes diferencias en la presentación de estos objetos matemáticos en los textos dirigidos a las dos modalidades de Bachillerato. Encontramos variedad del número y tipo de propiedades presentadas, que no se suele incluir la valoración de la bondad de ajuste o la construcción de modelos no lineales. Estos resultados proporcionan criterios para mejorar la presentación de la regresión en los textos de Bachillerato.
Resumo:
En este trabajo se realiza un estudio que conduce a la obtención de fórmulas electorales, basadas en sucesiones de divisores, que aseguran una representación proporcional a la hora de asignar los escaños en cada circunscripción. Se ha encontrado una familia de fórmulas a la que pertenecen como casos particulares D’Hondt, StLagüe, Imperiali y el método Danés. De las propiedades matemáticas de las fórmulas obtenidas se deducen ventajas e inconvenientes que va a tener el uso de cada una de ellas.