61 resultados para 1208 Probabilidad
Resumo:
En el trabajo se presenta una síntesis de la importancia que se atribuye a formar una cultura estadística en los ciudadanos, se caracterizan los programas de Matemática para décimo y duodécimo grado en Cuba, los que contemplan contenidos de Estadística Descriptiva y Probabilidades; así mismo, se valoran estos contenidos y se presenta una metodología encaminada a orientar a los profesores de la enseñanza media superior en lo referente a la organización y desarrollo del proceso de enseñanza-aprendizaje de la Estadística y las Probabilidades.
Resumo:
Los esquemas lógico-matemáticos desarrollados durante el crecimiento y formación dentro de un sistema educativo podrían influir y marcar cierta evolución sobre los sesgos del pensamiento probabilístico de los estudiantes, aun cuando éstos no reciban instrucción formal en probabilidades. Esta investigación ha sido realizada con 152 estudiantes de nivel medio entre 13 y 17 años. Los objetivos de la misma han sido: (a) identificar y analizar la influencia de esquemas lógico-matemáticos sobre sesgos intuitivos en juicios bajo incerteza cuando no existe conocimiento probabilístico formal y (b) analizar la evolución etaria de estos procesos. La metodología utilizada es mixta. Los instrumentos han sido cuestionarios con preguntas orientadas a la detección de algunos sesgos intuitivos y los esquemas actuantes.
Resumo:
Uno de los objetivos del presente trabajo es detectar los motivos por los cuales el concepto de promedio aritmético está tan arraigado en el estudiante que no puede desprenderse de él y lo interpola a otros ámbitos del quehacer matemático, específicamente al probabilístico. Se busca entender, mediante la línea de investigación conocida como la construcción social del conocimiento matemático, por qué los alumnos tienen problemas en aceptar y reconocer al valor esperado, conocido también como media o esperanza matemática, como un promedio en un nuevo escenario con nuevas características.
Resumo:
Los problemas combinatorios tienen profundas implicaciones tanto en el desarrollo de algunas ramas de la Matemática como en otras disciplinas (Batanero, Godino y Navarro-Pelayo, 1994). Una mención especial merece el papel de la Combinatoria en la Probabilidad, ya que una escasa capacidad del razonamiento combinatorio reduce la aplicación del concepto de Probabilidad a casos muy sencillos o de fácil enumeración (Piaget e Inhelder, 1951). Debido a la importancia del tema, decidimos concentrarnos en su tratamiento en algunos libros de texto de Matemáticas de Educación Secundaria. Nos basamos en el desarrollo de la teoría de los significados sistémicos, desarrollada por Godino y colaboradores, para considerar el libro de texto como una institución y, en ese contexto, el problema de investigación abordado es la caracterización del significado institucional del objeto matemático “Combinatoria” en los libros de texto citados.
Resumo:
Quando pensamos em introduzir o conceito de probabilidades não podemos deixar de considerar que os alunos, independentemente de sua formação escolar, já têm contato com situações de caráter aleatório. Trata-se assim, desde as séries iniciais do Ensino Fundamental, de conduzir os alunos em um processo de observação e análise do componente de imprevisibilidade intrínseco a estas situações. Trabalharemos neste mini-curso tal introdução a partir de um contexto de probabilidade geométrica, que propõe aos alunos a identificação do modelo que melhor representa o jogo de Franc-Carreau. A atividade dos alunos, adaptada das elaboradas por Coutinho (2001).
Resumo:
El objetivo de este trabajo es explicar el uso del teorema de Bayes en la estimación de la función de densidad posterior (fdp) de parámetros de interés, usando el software matemático Maple. Se presenta el caso de la distribución de Pareto como una aproximación a la distribución de los ingresos de una población. Se estima la fdp del parámetro alfa de la distribución de Pareto para el caso de datos agrupados.
Resumo:
Con el propósito de promover razonamiento probabilístico bajo los enfoques intuitivo, clásico y frecuencial en estudiantes de grado undécimo sin instrucción previa en probabilidad, se realizó un análisis didáctico para proponer la implementación de un conjunto de tareas que permitan el avance en dicho razonamiento. A partir de dicho análisis se establecen una serie de capacidades, errores y dificultades que perfilan una posible ruta de instrucción y que delinean como aporte de esta ponencia una propuesta de instrucción que incluye situaciones asociadas a juegos de tablero, laberintos, aparato de Galton y carreras de juegos electrónicos.
Resumo:
Generalmente, los estudiantes de bachillerato y universitarios tienen dificultades para comprender los conceptos más elementales de probabilidad y estadística. La presentación de conceptos abstractos de una forma visual y dinámica puede ayudar a comprenderlos mejor. La simulación de experimentos aleatorios ayudará a conseguirlo. Presentamos a continuación algunas de las actividades preparadas para ello.
Resumo:
En estadística y probabilidad encontramos diferentes paradojas de solución adsequible a los estudiantes que permiten organizar actividades didácticas en la enseñanza y aprendizaje. En este trabajo describimos la paradoja de Simpson, que produce múltiples errores en la interpretación de la asociación y correlación. Describimos la paradoja y su historia, algunas soluciones y ejemplos. También analizamos los contenidos estadísticos trabajados en su solución, así como los posibles razonamientos erróneos de los estudiantes.
Resumo:
A mediados del siglo XVIII el prolífico y genial matemático suizo leonhard Euler analizó y resolvió un juego de probabilidad con cartas llamado Rencontre. Como otros problemas probabilísticos, el enunciado es fácilmente comprensible, su análisis no es elemental y el resultado parece contrario a la intuición o, cuando menos, sorprendente. Euler utiliza, para la resolución del problema, la combinatoria y la suma de ciertas sucesiones. En este artículo se pretende llegar a la misma conclusión recurriendo a unas matemáticas más cercanas al alumno de bachillerato.
Resumo:
Que justo en medio de la calzada de la Avenue des Martyrs de Douz, en los límites del Sahara tunecino, donde vi un papel que me llamó la atención. Estaba arrugado en una bola y por unos instantes dudé en agacharme a recogerlo. Pero los trazos intermitentes entre las arrugas me resultaban tan familiares que no pude evitar recoger del suelo lo que alguien había tirado, probablemente con rabia. Mi acto implicaría abrir una conversación sobre un tema incómodo y poco natural mientras uno está de vacaciones, toda una verdadera provocación. Sin embargo, no podía dejar escapar una ocasión como aquella. Vivía un fenómeno insólito que superaba los límites de imaginación. Así que me agaché y cogí del suelo aquel lío de papel.
Resumo:
El último de los problemas propuesto a los lectores en el Tratado de Huygens, publicado por primera vez en 1657, es hoy día conocido como el problema de la ruina del jugador. Dicho problema consiste en calcular la probabilidad de que un jugador arruine al contrario en un juego a un número indeterminado de partidas, cuando los dos jugadores inician el juego con un cierto número de monedas cada uno. A priori, su enunciado asusta cuando se enfrenta por primera vez, pero puede ser un buen recurso didáctico para profesores que enseñan cálculo de probabilidades a estudiantes de un determinado nivel, dada la resolución elegante y cómoda que se dispone, sin necesidad de un gran aparato matemático. La autoría del problema, tradicionalmente asignada a Huygens, la resolución de éste, la de De Moivre de 1712, así como una resolución más actual y cercana al estudiante del mismo, forman parte del contenido de este artículo.
Resumo:
A partir de la novela El curioso incidente del perro a medianoche de Mark Haddon, en la que se plantean diversos temas matemáticos, proponemos una serie de actividades para el alumno. A través de este trabajo se trata de demostrar que la literatura no es ajena a las matemáticas, además de animar a la lectura y enseñar temas matemáticos de interés en la actualidad como la criptografía de clave pública, la teoría de la probabilidad y la teoría del caos, que son aplicables a problemas del mundo real.
Resumo:
Este trabajo pretende poner de manifiesto que cuando se realizan sorteos para seleccionar un grupo de personas en función de sus apellidos y se utiliza un método basado en el sorteo aleatorio de letras, se produce un resultado en el que no todos tienen la misma probabilidad de ser seleccionados y en algunos casos con unas probabilidades muy dispares.
Resumo:
En este trabajo se presenta un juego que sirva para introducir trabajar el concepto de probabilidad. Puede utilizarse en alumnos que no conozcan dicho concepto, basándose en la noción intuitiva de probabilidad, o bien, en aquellos alumnos que si sepan calcular las probabilidades de los sucesos que aparecen en el juego.