88 resultados para Álgebra relacional
Resumo:
Se presenta una síntesis de una experiencia de aula llevada a cabo en el Colegio Alfonso López Pumarejo IED, en el marco de la semana de práctica de la Licenciatura en Matemáticas de la Universidad Pedagógica Nacional, para la cual se utilizó como herramienta, un material nominado Tabletas Algebraicas, con el objetivo de introducir a los estudiantes en el proceso de factorización de algunos polinomios a través de la relación entre el lenguaje geométrico y el algebraico, estudiando el significado geométrico de algunos productos notables en relación con la noción de área de figuras geométricas como cuadrados y rectángulos.
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.
Resumo:
Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.
Resumo:
En este documento se hace un estudio del software GeoGebra que permite abordar la geometría, el cálculo y el álgebra a través de construcciones dinámicas. Una posibilidad muy interesante que nos ofrece el programa, desde el punto de vista didáctico, es la exportación a formato html. Esta opción permitirá al alumnado manipular escenas dinámicas en un navegador Web y, así, analizar comportamientos, visualizar conceptos, propiedades, modificar las construcciones, etc.
Resumo:
El estudio tiene como propósito investigar los procesos de transferencia del aprendizaje situado de la sintaxis algebraica para la resolución de ecuaciones lineales, cuando se utiliza un modelo de enseñanza concreto, virtual y dinámico con estudiantes de nivel secundaria. Al final del estudio, los alumnos muestran un avance significativo en la resolución de ecuaciones y se puede decir que en su mayoría logran realizar la transferencia de las acciones efectuadas con el sistema de signos del modelo concreto (balanza virtual) a acciones que se ejecutan con el sistema de signos del álgebra. A su vez, se observó que los procesos de transferencia pasan por diferentes etapas, dependiendo del sistema de signos hacia el cual se logra la transferencia de acciones.
Resumo:
A Geometria Analítica é parte integrante dos conteúdos a serem trabalhados na Educação Básica. Além disso, os conceitos trabalhados na Educação Básica são aprofundados nos componentes curriculares dos cursos de graduação das ciências exatas tais como Engenharia, Ciências da Computação, Arquitetura, Matemática, Física, etc. Seu estudo é relevante, pois é uma ferramenta importante para o Cálculo Diferencial e Integral e é uma das principais referências em um primeiro curso de Álgebra Linear. Este trabalho tem por objetivo apresentar um estudo histórico e epistemológico das primeiras contribuições da Geometria. É importante que o professor discuta os acontecimentos históricos ao trabalhar com os conteúdos da Geometria Analítica, propor aos alunos os problemas matemáticos que originaram os conceitos da Geometria Analítica e possibilite ao aluno a construção do conhecimento e não apenas para a resolução de algoritmos.
Resumo:
El presente trabajo muestra parte de los resultados de un proyecto de investigación desarrollado en el Instituto Politécnico Nacional, relacionados con el estudio de variación, concepto que es esencial para analizar diferentes fenómenos físicos y de la vida cotidiana empleando para ello la exploración múltiples representaciones a partir de tratamientos cuantitativos, cuyo objetivo fue analizar las diferentes estrategias que el alumno emplea cuando enfrenta situaciones que están ligados a la noción de variación. En particular el estudio se enfocó en la noción de función que es vista como modelo para el estudio de la variación, para lo cual se diseñaron actividades con el propósito de fomentar la exploración de tratamientos cuantitativos que beneficien la identificación del contenido en múltiples representaciones. La experiencia se realizó con alumnos del nivel medio superior que cursaban la asignatura de Álgebra, impulsando un ambiente de comunicación y discusión continua.
Resumo:
El presente trabajo plantea la posibilidad de impulsar la Interpretación Global, en diversas representaciones para desarrollar tratamientos que permitan fomentar la exploración de sus contenidos. La experiencia se llevó a cabo con alumnos que cursaban la asignatura de álgebra del nivel medio superior, cuyo objetivo fue identificar las conjeturas y procesos cognitivos que el alumno desarrolla cuando se ha tenido la vivencia de explorar tratamientos cualitativos y cuantitativos en múltiples representaciones. Los resultados muestran la identificación de patrones cuando se plantean situaciones familiares en el alumno, así como el anclaje del contexto para algunos estudiantes y la descontextualización para otros.
Resumo:
En el escrito se presentan algunos resultados obtenidos en un trabajo de investigación enmarcado en la teoría socioepistemológica. Particularmente se discute un análisis de los aprendizajes matemáticos asociados a la noción de función como relación entre variables, en jóvenes de bachillerato desde una perspectiva contextual del conocimiento. Se infiere que el contexto guarda estrecha relación con las formas en que estudiantes movilizan su matemática y su pensar, por lo que el aprendizaje se caracteriza como un proceso relacional epistémico contextual.
Resumo:
El presente trabajo de investigación tiene por objetivo la obtención de indicadores para la organización de saberes matemáticos correspondientes al área de Precálculo, Geometría y Álgebra de nivel medio. Para la consecución de éste, se realiza en primera instancia un estudio documental el cual permitiera generar un estado del arte de propuestas didácticas generadas en Matemática Educativa en la última década, seguido de un estudio descriptivo cuyo objetivo es identificar aquellos elementos que caracterizan las propuestas como favorecedores de la construcción del conocimiento matemático. Particularmente nos centraremos en los resultados obtenidos al momento en el área de Precálculo, entre los cuales se tiene que las propuestas didácticas parecen tener en común el que la construcción del conocimiento se dé a través de la práctica humana y el carácter científico de los conocimientos matemáticos, como son: la predicción, la visualización y la modelación. La tecnología ya no es un recurso para el profesor sino una herramienta para el estudiante.
Resumo:
La investigación tiene dos fases: 1) Se plantea a los estudiantes de primer ingreso a la Universidad Panamericana, Guadalajara, México la simplificación de la expresión algebraica ; analizándose las respuestas equivocadas con su posible origen. 2) Se hace un estudio con 7 profesores de educación media básica y media superior, en el cual, se les presenta la simplificación errónea (a la izq.) con la consigna de mencionar el origen del error y cómo le ayudarían al alumno. Alumnos cometen errores de muy diverso origen, y los profesores encuestados no siempre analizan a profundidad el origen del error cometido por este alumno.
Resumo:
El estudio de la matemática permite la modelización de situaciones que conducen a la resolución de problemas. Por esto, es primordial que los estudiantes analicen los cambios que ocurren en diferentes fenómenos biológicos, económicos y sociales. Sin embargo, durante la escuela media, no se favorece demasiado el desarrollo del pensamiento y lenguaje variacional, base para la comprensión de los conceptos de la matemática de la variación y el cambio, es decir el cálculo. Por este motivo, este trabajo, enmarcado en el proyecto de investigación “Pensamiento y lenguaje variacional: bases para la construcción de conceptos del cálculo diferencial”, tiene como objetivo el análisis y valoración de los resultados obtenidos en una experiencia de aula centrada en el diseño, implementación y corrección de una guía de actividades que indaga las nociones que tienen los alumnos que ingresan al nivel universitario con respecto a variables, cambios, funciones, imagen, gráficas, expresión analítica, valor numérico y comportamiento de funciones.
Resumo:
Las competencias matemáticas se refieren al dominio, por parte del estudiante, de los conocimientos, habilidades, valores y actitudes que son indispensables tanto para la comprensión del discurso de las ciencias, las humanidades y la tecnología, como para su aplicación en la solución de los problemas de su vida escolar, social y laboral. El objetivo del presente trabajo fue identificar los niveles de competencias matemáticas adquiridos cuando se promueve el estudio de contextos evocados introductorios, que permitan explorar diversas representaciones. La experiencia educativa se llevó a cabo con un grupo de 45 alumnos, del nivel medio superior que cursaban la asignatura de álgebra, y cuya duración fue de 18 semanas. El análisis de los datos permitió identificar tres niveles de Competencias Matemáticas.
Resumo:
Esta investigación se efectúa en el marco de la reforma de la educación secundaria del 2006 en México y tiene como propósito mostrar los avances sobre la edificación de conocimientos matemáticos en los alumnos de primer año de secundaria, a través de los 5 bloques del año escolar, en los que figuran tres ejes de estudio que son: a) Sentido numérico y pensamiento algebraico, b) Forma, espacio y medida y c) Manejo de la información. Pero solo se estudiará el eje temático relacionado a pensamiento numérico y lenguaje algebraico, poniendo especial énfasis en una de las cuatro competencias que marca el programa: la competencia de la comunicación. Haciendo una comparación entre dos grupos de estudio, ya que en uno empleará el método tradicional y el otro utilizará el de inducción.
Resumo:
En este trabajo se ofrece un estudio acerca de las desigualdades a partir de las prácticas didácticas del profesor. La investigación –que se coloca bajo el marco teórico de la socioepistemología– pretende ofrecer herramientas de ayuda que permitan encontrar enfoques metodológicos y soportes didácticos para los maestros, a fin de apoyarlos en su quehacer cotidiano. En esta etapa de la investigación hemos elaborado un primer instrumento didáctico que queremos proponer a un conjunto de maestros de nivel medio-superior para estudiar su postura frente de nuestra propuesta a fin de: darnos cuenta de cuáles son los elementos que más propician una resistencia al cambio del quehacer didáctico; verificar la factibilidad de nuestra propuesta.