54 resultados para Sistemas de ecuaciones lineales
Resumo:
El objetivo de este trabajo es el de presentar una aplicación, llevada a cabo en un centro de enseñanza secundaria, de un modelo de decisión diseñado para situaciones de toma decisiones con múltiples expertos con información espero que en concreto dicho modelos utilizados para clasificar, de mayor a menor grado de influencia, un conjunto de posibles causas del mal comportamiento de los estudiantes en el aula, de acuerdo con las opiniones de un grupo de profesores de dicho centro.
Resumo:
En este artículo se presenta un protocolo criptografico para la administración de secretos como base para la enseñanza y aplicación de las matemáticas en enseñanza secundaria. La facilidad de comprensión del problema propuesto lo convierte en un arma eficaz para atraer la atención de los estudiantes en contenidos de difícil aprendizaje como polinomios y sistemas de ecuaciones.
Resumo:
En esta comunicación presentamos parte de los resultados obtenidos en las investigaciones realizadas dentro de Planes Nacionales de Investigación Educativa del C.I.D.E. durante los cursos 1987-88 y 1988-89, que trataban de averiguar las dificultades del aprendizaje del álgebra en secundaria. El objetivo inicial de este trabajo era estudiar las dificultades planteadas en la resolución de problemas de enunciado verbal en los que se utiliza una ecuación de primer grado o un sistema lineal de dos ecuaciones con dos incógnitas, ya que considerabamos, como la mayoría de los profesores lo hace, que la mayor dificultad presentada en álgebra estaba en la resolución de estos problemas.
Resumo:
Tras una breve introducción para hacer referencia a distintos tipos de códigos secretos, el articulo estudia con detalle, esquemáticamente y mediante ejemplos, los códigos matriciales. Se expone, además, una forma de automatizar dichos códigos en el aula, mediante un programa escrito en dBASE III Plus. La parte final consta de unas preguntas sobre sus posibilidades didácticas.
Resumo:
Este trabajo describe una experiencia realizada en un curso de análisis numérico dictado en la facultad de Ciencias Exactas y Naturales de la Universidad de Mar del Plata (Argentina). La posibilidad de dictar clases en un laboratorio que cuenta con un número de computadoras que es apenas superado por la cantidad de alumnos permite promover un ambiente interactivo, de reflexión y experiencias que dan lugar a un verdadero aprendizaje significativo. En particular el programa Derive, conforma un importante recurso para mejorar las estrategias didácticas que sin dudas posibilitan lograr los objetivos propuestos.
Resumo:
En este trabajo presentamos un proyecto de investigación cuyo propósito fundamental es establecer una reconstrucción de significados de la ecuación diferencial y" + by’ + cy = f a través de una situación de una situación de transformación. Esta consiste en identificar patrones de comportamiento de la solución y(x) en relación con la función f, al variar los coeficientes b y c de la ecuación diferencial e interactuar en los contextos algebraico y gráfico. Nuestra hipótesis de investigación consiste en que el comportamiento tendencia! de las unciones es el argumento que tendrá que construir el estudiante en la situación de transformación, el cual posibilitará la reconstrucción de significados de la ecuación y" + by’ + cy = f y de la propiedad de estabilidad al interactuar en los contextos algebraico y geométrico. Nos proponemos diseñar situaciones con la intención de generar los argumentos en el estudiante. Nuestro análisis se fundamentará sobre discusiones en grupo y sobre actividades de trabajos escritos.
Resumo:
Se analizan resultados de un estudio con alumnos de secundaria, en el que se utiliza un modelo virtual de la balanza para la enseñanza de la resolución de ecuaciones de primer grado. A diferencia del modelo concreto o diagramático, el modelo virtual es dinámico e interactivo y en su versión ampliada (balanza con poleas) incluye la representación y resolución de ecuaciones con sustracción de términos. Los resultados indican que al final del estudio, los alumnos logran extender el método algebraico de resolución a una variedad amplia de modalidades de ecuaciones y que de manera espontánea infieren el método de transposición de términos. Con el fin de investigar los procesos de producción de sentido y de construcción de significado, se adopta una perspectiva semiótica que incorpora al análisis las producciones sígnicas de los estudiantes, como parte de la interacción entre los sistemas de signos algebraico, aritmético y el sistema de signos del modelo.
Resumo:
Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.
Resumo:
Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.
Resumo:
Los procedimientos, gráficos, operaciones y procesos en las matemáticas hacen necesaria la implementación de recursos didácticos que permitan facilitar el aprendizaje de los contenidos de ella. Por esto son indispensables en la enseñanza de las matemáticas como instrumentos de apoyo que favorecen el proceso de matematización y representación de ideas matemáticas. Esto es una gran dificultad para el niño con discapacidad visual ya que en la educación matemática hacen falta materiales didácticos adaptados lo cuales mejoren el ritmo de trabajo y rendimiento a la hora de aprender haciendo uso de una Didáctica Especial de la Matemática para ciegos que permita una adecuación de materiales pedagógicos e instrumental de trabajo para esta población.
Resumo:
El propósito de este trabajo consiste en mostrar de qué manera la programación en Mathematica 4.1 nos permite resolver ecuaciones diferenciales de la forma de manera interactiva por medio de botones. Estos botones operan sobre una ecuación diferencial dada y la transforman por medio de ciertas reglas, de manera que el proceso de solución se observa paso a paso. Se ha puesto especial interés en las ecuaciones exactas de la forma y en ecuaciones de este tipo que admiten factor integrante. Con estos botones se pretende que el estudiante, antes que realizar cálculos, conceptúe los métodos usados en la solución de las ecuaciones diferenciales descritas.
Resumo:
El trabajo presenta los resultados de la aplicación de una estrategia constructiva para la introducción del tema de las ecuaciones, que toma en cuenta el paso de lo aritmético a lo algebraico y de lo concreto a lo representación en la resolución de las ecuaciones (tanteo sistemático, uso de la balanza, despeje en contexto abstracto, que se centra en la actividad y creatividad del alumno, y que considera el uso de diferentes sistemas de simbólico). El modelo se aplicó a una sección de 6° grado de Educación Básica, integrada por 25 alumnos de ll y 12 años, de una escuela pública de Barquisimeto (Venezuela). Se desarrolló a lo largo de seis sesiones de 90 minutos cada una. Los resultados evidencian que la estrategia implementada resultó exitosa; también resultó motivadora y promotora de la creatividad y la participación. En cuanto a los aprendizajes evidenciados durante la experiencia, cabe destacar que los alumnos reconocen el carácter bidireccional que tiene el signo de la igualdad en álgebra y la equivalencia de los miembros de una ecuación, identifican la incógnita en una ecuación como un número desconocido, e interpretan ese número como solución de la ecuación; también, que llegan a dotar de significado al algoritmo convencional de despeje.
Resumo:
A partir de la hipótesis de que una relación simbiótica entre las nociones de predicción y de simulación sea el eje del cálculo integral escolar, reportamos, aquí, algunos resultados de nuestro trabajo con estudiantes universitarios con los que hemos explorado aspecto de la simulación en las ecuaciones diferenciales lineales de primer orden. Favoreciendo la idea de simulación, se trabajó con la ecuación diferencial, dónde se variaron uno a uno los parámetros a, b y c. Encontramos un argumento gráfico que atiende las tendencias de las gráficas, ya sea en una suma de funciones, en la variación de los parámetros o en la forma de la gráfica de la solución de las ecuaciones diferenciales, favorecidos por los dispositivos tecnológicos permiten concebir a una función globalmente.
Resumo:
El presente trabajo asume como referente teórico la evaluación del aprendizaje desarrollado en la tesis de doctorado de la autora principal del trabajo (Pérez, 2000), en este sentido la evaluación toma un matiz diferente y está presente desde que planificamos y organizamos el proceso de enseñanza aprendizaje. Paralelamente a esto se muestra el papel y la utilidad de las calculadoras gráficas en la enseñanza de las matemáticas, mostrándose como un recurso más en el quehacer didáctico de los maestros o de una herramienta al servicio de los maestros y alumnos. En el trabajo se muestra cómo lograr el diseño de una unidad en las matemáticas a partir del tema de ecuaciones de segundo grado. Esta propuesta ha sido utilizada en diversos cursos de didáctica de las matemáticas en maestrías de enseñanzas de las ciencias y en cursos independientes para la formación del personal docente, obteniéndose resultados alentadores en el trabajo de los maestros y alumnos.
Resumo:
En este documento presentamos un procedimiento para caracterizar las estrategias empleadas en la resolución de problemas relacionados con sucesiones de números naturales lineales y cuadráticas que involucran el razonamiento inductivo. Este procedimiento se fundamenta en la naturaleza del razonamiento inductivo y en el análisis de contenido de las sucesiones, teniendo en cuenta la estructura conceptual, los sistemas de representación y los aspectos cognitivos asociados al contenido matemático.