22 resultados para Savory, Isabel


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lo largo de la historia han existido una serie de problemas que han intrigado, a la vez, frustrado los matemáticos de todos los tiempos. Algunos de ellos siguen sin resolverse y otros como problemas isoperimétricos del que venimos preocupándonos desde el número 33 de suma tan sencillo de enunciar y sin embargo tan difícil de demostrar, se resolvieron tras siglos de esfuerzo. Cuando decimos anterior lo hacemos teniendo muy en cuenta lo que tal afirmación significa. Es decir, resolver un problema no consiste sólo en dar una solución sino demostrar que tal solución existe. De esta cuestión nos ocupamos ahora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

¿cuál es el camino más corto entre dos puntos del plano? ¿Y del espacio? ¿Y sobre una superficie cualquiera? ¿Qué forma tiene el tobogán más rápido? ¿Cuál es la curva plana que encierra mayor área entre todas las que tienen una misma longitud?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demos un gran salto en el tiempo. En números anteriores narramos los avatares del problema isoperimétrico en Grecia y en los países islámicos medievales, respectivamente. Retomemos el enfoque dado por Pappus con el que llegó a la conclusión de que, para un área dada, el perímetro del hexágono regular es menor que el del cuadrado o el del triángulo equilátero, por lo que si el problema se plantea sobre una teselación regular del plano, un trozo finito del teselado regular hecho con hexágonos regulares es el que requiere menor perímetro. Bueno, aún no podemos detenernos porque hemos de hacer la demostración de la proposición de Pappus en 3D. El conocido MacLaurin (1698-1746), profesor de Aberdeen y Edimburgo, utilizó el método que a continuación presentamos. Lo hizo para poner de manifiesto la capacidad de la Geometría clásica como fuente de investigación en cualquier momento (conviene recordar que MacLaurin estaba centrado en analizar las posibilidades de los métodos infinitesimales que en su época emergían, lo que demostró sobradamente con su Treatise of Fluxions).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la entrega del N° 35 nos preguntábamos si la evolución histórica del problema nos podría servir de guía para planificar una actuación en clase, siguiendo el modelo Van Hiele. ¿Cómo describir este modelo en pocas líneas?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ser demostrado, no solamente por Aristóteles, sino por Arquímedes y Zenodoro, que entre las figuras isoperimetricas, la mayor es entre las planas el círculo, y entre los sólidos la esfera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Siempre me ha interesado la historia de las matemáticas cuando la resolución de problemas ha sido su columna vertebral. Ahora que estamos en el 2000, tenemos muy presente aquella famosa lista de 23 problemas dados por Hilbert hace 100 años.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentamos una experiencia desarrollada durante la celebración de la Semana Cultural del LB. “Virgen de Valme” de Dos Hermanas (Sevilla), bajo el nombre de “Taller de Matemágicas”, en el curso 89/90. Con ello no sólo buscamos que otros compañeros se animen a la realización de actividades de este tipo, sino fundamentalmente que estas vayan ganado cada vez más terreno en su introducción en las programaciones de la asignatura de Matemáticas.