24 resultados para Ponderación de términos
Resumo:
En este estudio, de orden cualitativo, se aplicó un cuestionario a 17 estudiantes con déficit auditivo, 18 a 24 años de edad, para obtener información sobre su comprensión de los números naturales, sus operaciones y sus relaciones básicas. Registrados en papel, los reactivos se presentaron en lengua escrita, con términos sencillos. Se prescindió de intérprete en la lengua de señas mexicana para identificar directamente posibles dificultades de comprensión de los conceptos matemáticos implicados; además, la aspiración de los participantes en el estudio al acceso a un bachillerato en línea impone su dominio de la lengua escrita. Los resultados indican el predominio de un razonamiento aditivo sobre el multiplicativo y, a lo más, una abstracción pseudoempírica en edades que en los normoyentes corresponden a las etapas del pensamiento formal. La escasa y deficiente producción en lengua escrita referida a los reactivos sugiere investigar el empleo del método de logogenia para su adquisición en conjunción con la del conocimiento matemático.
Resumo:
En este trabajo se presenta una aplicación del Análisis de Redes Sociales (ARS) al estudio de las relaciones entre alumnos de segundo año de una Escuela Técnica. El ARS se apoya en la teoría de grafos cuyo bagaje matemático permite analizar y medir, en términos generales, propiedades de las estructuras sociales en particular la escuela. La vida escolar es una trama compleja de factores que influirían en el rendimiento académico de los alumnos, tales como: tiempo de estudio que comparten, desde cuándo se conocen entre los compañeros, la proximidad de sus domicilios, sexo, edad, entre otros. Los factores sexo y edad no son relevantes dado que el grupo bajo estudio está formado por varones alrededor de los 16 años. En este trabajo se mostrarán los resultados obtenidos por el primer factor mencionado que fueron procesados a través de los software Ucinet 6 y Netdraw.
Resumo:
Se hace un estudio algebraico y geométrico de los campanoides, nuevos objetos basados en los polígonos regulares, se definen, clasifican y muestra el proceso de su construcción. En este trabajo analizo específicamente el Campanoide Triangular indicando sus características, modelo algebraico que lo define y la ecuación para calcular su ´área en términos de la base, al final se muestran unos mosaicos construidos con estos campanoides.
Resumo:
En esta comunicación presentamos la forma como resumimos todos los posibles caminos de aprendizaje considerados para el desarrollo de dos tareas. Las dos tareas pretenden contribuir al logro de un objetivo de aprendizaje: resolver problemas que implican permutaciones sin repetición. Exponemos algunas expectativas de aprendizaje planteadas en términos de capacidades y errores y organizamos esas expectativas por medio de caminos de aprendizaje. Analizamos los caminos de aprendizaje resumiendo las estrategias de solución mediante secuencias de capacidades. Finalmente, analizamos la contribución de las tareas al logro del objetivo.
Resumo:
El texto que sigue es un comentario sobre un libro de FW Lawvere y SH Schanuel de publicación reciente pero con una beca de gestación, que contiene una experiencia concreta introducción de conceptos de la teoría categorías del estadio temprano de enseñanza de las matemáticas. El comentario incluye cumbre de análisis comparativo de este experiencia actual con la protagonizada por PJ Hilton en el año 70. La diferencia entre ambas propuestas explican términos de la evolución general de la teoría a lo largo de la segunda mitad del presente siglo, particularmente en el último cuarto.
Resumo:
El título corresponde a una cita de M. Morse que elogiaba de esa forma la aparición del libro el año 1941. En la contraportada de la edición española se recogen unas palabras de A. Einstein acerca de esta obra: «Una acertada exposición de los conceptos y métodos funda- mentales de la matemática. Constituye una introducción que puede leer sin dificultad el profano, en tanto que al iniciado en matemáticas le ofrece un panorama general de sus métodos y principios básicos». No son las únicas personalidades que hablan de ¿Qué es la matemática? en términos elogiosos. El Courant/Robbíns, como se le suele nombrar coloquialmente, se ha convertido en poco tiempo en un clásico entre las obras de introducción al pensamiento y métodos de las matemáticas.
Resumo:
Los términos claves sobre valoración y enjuiciamiento de los niños y adolescentes del sistema escolar no son equivalentes en el sistema educativo español con los que se utilizan en la Comunidad internacional de Educadores Matemáticos. En la literatura usual en inglés hay dos términos claves: Evaluation y Assesment, evaluation significa “juzgar o determinar el valor o la calidad de algo” y “ha evolucionado de un interés inicial único sobre la medida del rendimiento para realizar juicios sobre los estudiantes al interés creciente actual en obtener información para mantener la gestión y tomar decisiones sobre programas” (Romberg, 1988).
Resumo:
A partir del inicio del curso 87-88, un nuevo programa de matemáticas se puso en práctica en los colegios franceses. (87/88 para la clase (le 6°, 88/89 para la clase de 5°. etc ...) Hasta el momento presente, los programas venían etiquetados en términos de contenidos que había que enseñar, eventualmente acompañados por consideraciones generales relativas a los fines y objetivos globales. Estos programas describían más el comportamiento esperado del enseñante (defendiéndose de ellos como podía) que el del alumno.
Resumo:
En este ensayo se propone el uso de una razón que permite determinar la secuencia de las series cuyas sumas son cuadrados perfectos; estas soluciones las usamos posteriormente para determinar algunos primos de la forma 4n+1, descubrimos una nueva razón que relaciona la constante Pi y un número primo de diez cifras de la forma 4n+1. Más adelante describimos la relación de esta clase de números primos con los llamados primos gemelos, lo que nos permite replantear la Conjetura Binaria de Goldbach en términos de una igualdad que involucra exclusivamente las clases de números primos que nos ocupan.