20 resultados para Modelo Logit con Coeficientes Aleatorios


Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo de este trabajo es el de presentar una aplicación, llevada a cabo en un centro de enseñanza secundaria, de un modelo de decisión diseñado para situaciones de toma decisiones con múltiples expertos con información espero que en concreto dicho modelos utilizados para clasificar, de mayor a menor grado de influencia, un conjunto de posibles causas del mal comportamiento de los estudiantes en el aula, de acuerdo con las opiniones de un grupo de profesores de dicho centro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El problema de los puntos, –que ya habían abordado autores, como Pacioli, Tartaglia y Cardano–, es un problema de decisión bajo incertidumbre, que motivó la correspondencia entre Pascal y Fermat en 1654. Ahora bien, en la primera carta que escribe Pascal a Fermat, introduce un nuevo problema sobre dados, también de decisión bajo incertidumbre, «el problema de las partidas no jugadas», que ha motivado el presente trabajo. Aunque más sencillo que el problema de los puntos, ambos tienen cosas en común. Fermat aportará soluciones a estos problemas basadas en la enumeración de todos los posibles resultados, lo que Pascal denomina «el método combinatorio». Al tratar de evitar las enumeraciones de todos los resultados, Pascal descubrirá lo que llamó «método universal»: la esperanza matemática. Igualmente, y a requerimientos de Pascal, Fermat, descubrirá lo que llamamos el modelo de Pascal o modelo geométrico. En el presente trabajo aplicamos estos nuevos métodos al problema de las partidas no jugadas, lo que permitirá apreciar el trabajo que desarrollaron ambos matemáticos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante millones de años los seres vivos se han encontrado con numerosas situaciones adversas, es decir, con una enorme cantidad de problemas que han tenido que ir solucionando poco a poco mediante sucesivas adaptaciones. El éxito de la vida en innumerables entornos no es sino el reflejo de que los seres vivos han encontrado soluciones para los distintos problemas con los que se han enfrentado. Son varias las cuestiones que podemos plantearnos en relación a esta cuestión: ¿cuál es el mecanismo que ha permitido la supervivencia de los seres vivos en ambientes tan distintos?, ¿existe algún algoritmo matemático que subyazca en el mismo?, en este caso, ¿podría ser aplicable a otras situaciones y problemas? Los algoritmos genéticos son una de las herramientas que han nacido para responder a estas cuestiones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el presente artículo se reportan los resultados de una investigación que clasifica las conceptualizaciones que tienen estudiantes de primer ingreso universitarios de Costa Rica en temas de geometría y sistemas de ecuaciones mediante el modelo SOLO Taxonómico (propuesto por Biggs & Collis, 1982). Inicialmente los estudiantes se ubican en los primeros niveles de razonamiento en los temas de geometría y en niveles intermedios en sistemas de ecuaciones, al final los estudiantes mostraron mejoría después de un curso introductorio de matemáticas.