19 resultados para Gilberto Dupas
Resumo:
Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.
Resumo:
En este taller los participantes, a partir del desarrollo de una tarea, identifican algunas etapas en la formulación y validación de conjeturas. La tarea se centra en la exploración de un applet relacionado con la ecuación vectorial de la recta en el plano, a partir del cual se identifican algunas propiedades geométricas del objeto geométrico y, con estas, se establecen e intentan validar generalidades. Este taller surge en el marco del proyecto de investigación “Razonamientos abductivos, inductivos y deductivos desarrollados por estudiantes del curso de Geometría Analítica al realizar una tarea relacionada con la representación de objetos geométricos en distintos sistemas coordenados” que se realiza este año en la Universidad Pedagógica Nacional.
Resumo:
La presente comunicación busca poner de manifiesto algunas consideraciones que se pueden tener en cuenta a la hora de diseñar rutas de aprendizaje en torno al concepto de límite. En este sentido, el documento se estructura por medio de dos preguntas cuyas respuestas coinciden con las dos principales consideraciones resultado de este trabajo; dichos interrogantes (para qué de la enseñanza del límite, y cómo lograrla) permiten evidenciar la comprensión del concepto límite como un proceso que da lugar al desarrollo de procesos de profundización, con los cuales se alcanza la forma más pura de la competencia matemática.
Resumo:
El presente escrito reporta un estudio llevado a cabo para investigar las ideas de aleatoriedad de un grupo de estudiantes de décimo grado cuando resuelven problemas de naturaleza aleatoria. La investigación se realizó en el marco de la clase de Matemáticas durante cinco sesiones de hora y treinta minutos cada una en las que se desarrolló una unidad didáctica. La información fue recogida mediante observaciones de clase, interacciones de estudiantes, entrevistas semi-estructuradas y artefactos documentales con la producción de los estudiantes. Los principales resultados revelan que los estudiantes tienen ideas sobre aleatoriedad que van desde explicaciones ingenuas hasta explicaciones sustentadas.