55 resultados para Generalización de patrones
Resumo:
El propósito de este proyecto es facilitar el tránsito de los estudiantes desde la interpretación de la letra como objeto hasta la interpretación como número generalizado. El procedimiento seguido para el desarrollo de este proyecto fue el siguiente, se aplicó la prueba diagnóstica propuesta por Küchemann, a partir de los resultados de esta se hizo una clasificación haciendo un análisis global de la prueba y luego una mirada particular a cada uno de los ítems. Después de la clasificación se dispuso el diseño de talleres que permitieran superar algunas de las dificultades vistas a través de esta prueba; cada uno de los talleres podía tener una duración mayor de una clase o incluso una semana, al final de estos se sacaban conclusiones para evaluar la efectividad de los mismos. Las actividades, se basaron en encontrar patrones en una organización dada, con ello los estudiantes debían ilustrar la situación, responder unas preguntas guía y por último hallar una fórmula que les permitiera hallar la cantidad de objetos, en una posición o momento cualquiera.
Resumo:
En este trabajo se exponen de forma abreviada los resultados de una investigación desarrollada por los autores que parte de la determinación de las insuficiencias que se presentan en el estudio de algunos temas de la matemática superior como son los dominios numéricos y las series numéricas, se precisa que una de las causas que inciden en esta situación es que las operaciones conceptuales generalización—restricción que ofrece la lógica no siempre se adecuan totalmente a lo que en matemática se denomina como tal y a la no existencia de un procedimiento metodológico que oriente al profesor el trabajo con estas operaciones. Para resolver estas deficiencias se definen las operaciones generalización y restricción de conceptos de una forma más general y aplicable al estudio de la matemática y se propone un procedimiento para su aplicación, se ejemplifica con el estudio de los dominios numéricos y las series numéricas y se someten los resultados a un grupo de expertos que ofrecen una valoración positiva de la investigación.
Resumo:
En la primera parte de este trabajo se analizan las características generales del proceso de formación, desarrollo y generalización conceptual. Se analiza, además, la importancia de utilizar la resolución de problemas como un medio para facilitar estos procesos. En la segunda parte, a partir de una experiencia docente, se muestra el comportamiento de dos grupos de alumnos que tomaron parte en el proceso de formación, desarrollo y generalización del concepto de media numérica.
Resumo:
Presento una primera aproximación a la descripción del razonamiento inductivo de los estudiantes de Educación Secundaria en la resolución de dos problemas matemáticos. Se analizaron las respuestas de 12 estudiantes a través de su trabajo escrito y de las entrevistas semiestructuradas que se llevaron a cabo mientras trabajaban en los problemas. Este trabajo sirve como base para la elaboración de un modelo de razonamiento inductivo que ayuda a describir el proceso que siguen los estudiantes y que, en algunos casos, les facilita la resolución. Además se analizan las representaciones que utilizan los estudiantes así como los errores y dificultades que encuentran.
Resumo:
Se presenta en este capítulo un trabajo de investigación en el que se ha estudiado el uso que hacen unos alumnos de educación secundaria del razonamiento inductivo, cuando se les propone resolver un problema que no les resulta familiar. Para ello se ha elegido una tarea para cuya resolución es apropiado utilizar dicho razonamiento. Se han llevado a cabo entrevistas a los alumnos en el momento en el que realizaban la tarea, e ir explicando sus razonamientos. La preparación teórica básica de la investigación, el desarrollo de la actividad, así como los resultados obtenidos, constituyen el contenido de este documento.
Resumo:
En este documento presentamos un procedimiento para caracterizar las estrategias empleadas en la resolución de problemas relacionados con sucesiones de números naturales lineales y cuadráticas que involucran el razonamiento inductivo. Este procedimiento se fundamenta en la naturaleza del razonamiento inductivo y en el análisis de contenido de las sucesiones, teniendo en cuenta la estructura conceptual, los sistemas de representación y los aspectos cognitivos asociados al contenido matemático.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de tercero y cuarto de Secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
Pattern generalization is considered one of the prominent routes for in-troducing students to algebra. However, not all generalizations are al-gebraic. In the use of pattern generalization as a route to algebra, we —teachers and educators— thus have to remain vigilant in order not to confound algebraic generalizations with other forms of dealing with the general. But how to distinguish between algebraic and non-algebraic generalizations? On epistemological and semiotic grounds, in this arti-cle I suggest a characterization of algebraic generalizations. This char-acterization helps to bring about a typology of algebraic and arithmetic generalizations. The typology is illustrated with classroom examples.
Resumo:
We present an analysis of the inductive reasoning of twelve Spanish secondary students in a mathematical problem-solving context. Students were interviewed while they worked on two different problems. Based on Polya´s steps and Reid’s stages for a process of inductive reasoning, we propose a more precise categorization for analyzing this kind of reasoning in our particular context. In this paper we present some results of a wider investigation (Cañadas, 2002).
Resumo:
En este trabajo se presenta el resultado obtenido del análisis de un proceso de razonamiento inductivo desarrollado por 12 estudiantes de secundaria en un contexto de resolución de problemas. Se plantea un problema, en el transcurso de una entrevista, que consiste en determinar el número máximo de regiones que se obtienen al trazar rectas sobre un plano. Durante la resolución del problema los estudiantes, y a través del dialogo con el entrevistador, han de explicar y justificar sus decisiones. Centrándonos en el trabajo de Pólya y en otras investigaciones previas relacionadas sobre este tema, se define un sistema de categorías mediante las cuales se organizan los datos para su análisis.
Resumo:
En este trabajo nos centramos en la descripción de estrategias de resolución de problemas en los que el razonamiento inductivo puede ser un heurístico. La resolución de diferentes tipos de problemas puede contribuir a la adquisición de la competencia matemática. Presentamos y comparamos parte de los resultados de dos problemas propuestos en una investigación más amplia (Cañadas, 2007).
Resumo:
In this paper we present different ways used by Secondary students to generalize when they try to solve problems involving sequences. 359 Spanish students solved generalization problems in a written test. These problems were posed through particular terms expressed in different representations. We present examples that illustrate different ways of achieving various types of generalization and how students express generalization. We identify graphical representation of generalization as a useful tool of getting other ways of expressing generalization, and we analyze its connection with other ways of expressing it.
Resumo:
En esta comunicación se presenta la primera parte de una investigación cuyo objetivo fue analizar si un experimento de enseñanza diseñado ad hoc ayudó a la construcción de caracterizaciones equivalentes del concepto de dependencia lineal, en lenguaje geométrico y analítico. En primer lugar se diseñó un experimento de enseñanza en un contexto de geometría dinámica utilizando simultáneamente representaciones geométricas y analíticas del concepto y se describió una ‘trayectoria hipotética de aprendizaje’ en términos del mecanismo de ‘reflexión sobre la relación actividad-efecto’. En segundo lugar se describieron las trayectorias de aprendizaje de estudiantes de 2o de bachillerato (17-18 años) identificando las ‘acciones de generalización’ y las ‘generalizaciones de la reflexión’.
Resumo:
En este informe, presentamos el análisis de datos de una pareja de estudiantes durante la resolución de un problema de generalización en una clase de matemáticas de secundaria (15-16 años). De acuerdo con las teorías interaccionistas del aprendizaje matemático, asumimos que el discurso establecido en la interacción en pareja es un factor clave de influencia en los procesos de construcción de conocimiento matemático. Hasta ahora, los resultados ponen de relieve la relación entre el uso de ciertos indicadores discursivos y los avances en la "intención argumentativa" de las estudiantes. La mayoría de intercambios con intención argumentativa vienen precedidos o acompañados por refutación y cuestionamiento, y en menor grado, validación. La refinación del análisis actual se está realizando dentro del trabajo de tesis doctoral de la primera autora.
Resumo:
El actual currículo de matemáticas de la educación secundaria da gran importancia a procesos de razonamiento tales como la generalización. La investigación en Educación Matemática viene estudiando el modo en que se desarrollan estos procesos a través de distintos contenidos matemáti- cos. El tipo de representación que los estudiantes utilizan para expresar su razonamiento también es objeto de estudio ya que influye de manera decisiva en sus posibilidades para alcanzar la generalización. En el trabajo que se presenta a continuación, se analizan diferentes formas de expresar la generalización que utilizan estudiantes de secundaria cuando resuelven problemas que involucran sucesiones lineales y cuadráticas. Los autores han realizado un estudio en el que han participado 359 estudiantes de se- cundaria. Identifican la representación gráfica como una herramienta útil para lograr la generalización y analizan su conexión con otras formas de representación.