38 resultados para Evolución histórica del concepto
Resumo:
Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.
Resumo:
El propósito de la investigación fue determinar la diferencia en el aprendizaje significativo del concepto de derivada y reglas de derivación, en dos grupos de estudiantes de cálculo diferencial de la Universidad del Quindío, en uno utilizando la estrategia didáctica de enseñanza orientada desde conceptos previos, recorrido histórico, fases real, simbólica y conceptual y la resolución de problemas, y en el otro la estrategia didáctica tradicional, el tipo de investigación fue comparativa y correlacional. El diseño metodológico es cuasiexperimental. Se aplicó la prueba t-student para definir los resultados entre los grupos. Se llegó a la conclusión de que la estrategia didáctica propuesta en la investigación permitió que los estudiantes del grupo experimental comprendieran con mayor claridad las temáticas tratadas.
Resumo:
Este estudio de caso hace parte de una investigación que se está realizando con estudiantes sordos de grados octavo y décimo, con el propósito de lograr la comprensión/construcción del concepto de función, desde las dimensiones epistemológicas, didáctica y cognitiva. El estudio se fundamenta en el marco teórico de los registros de representación semiótica y la metodología de la Ingeniería didáctica, apoyado en el diseño, desarrollo e implementación de un software.
Resumo:
El propósito de este artículo es presentar una propuesta didáctica de la integral definida para la educación secundaria obligatoria y bachillerato a través de unas secuencias de aprendizaje que ayuden al estudiante a captar las ideas fundamentales del cálculo integral, del concepto de integral y del proceso de integración.
Resumo:
En la presente contribución intentamos evidenciar cómo la geometría a lo largo de toda su historia ha desempeñado un papel fundamental interactivo con la ciencia natural, en particular con la física, y más en concreto aún con la mecánica. En la primera parte esbozamos nuestra visión de esta intima interrelación desde el alba de la geometría en China, Mesopotamia y Egipto hasta nuestros días.
Resumo:
Desde diferentes concepciones psicopedagógicas aparece en la actualidad la importancia del aprendizaje significativo para la educación escolar, concepto que no tiene una significación única y es utilizado para resolver los problemas educativos de diferente naturaleza. En el trabajo se reflexiona acerca de aspectos del concepto de aprendizaje significativo, mostrando su utilidad para e] análisis y reflexión psicopedagógíca y desarrollando su connotación didáctica. Los cursos de Matemática que se imparten en la Licenciatura en Economía requieren de la comprensión de diversos temas, en particular del concepto de función. El estudio de este concepto resulta importante debido a que es imprescindible para la comprensión de conceptos como limite, continuidad, derivadas, etc. y para la solución de problemas específicos del área económica. En el trabajo se exponen consideraciones para lograr la significatividad didáctica en el estudio del concepto de función en el curriculum del economista y su aplicación práctica en el primer año de esta carrera en la Universidad Central de Las Villas.
Resumo:
Gran parte de los estudios realizados en tomo al concepto de variable y sus diferentes usos se ha centrado en estudiantes de secundaria, bachillerato y primer semestre universitario; en todos ellos se han detectado diversas dificultades para la comprensión y manejo adecuado de tal concepto. El concepto de variable es fundamental no sólo para el aprendizaje sino también para la enseñanza del álgebra. Como marco teórico para esta investigación se utilizó la descomposición que Ursíni y Trigueros (1998) hacen del concepto de variable. En ésta se consideran una serie de aspectos que incluyen la capacidad de interpretación, simbolización y manipulación de cada uno de los 3 usos de la variable que se consideran, a saber: variable como incógnita específica, variable como número general y variables en relación funcional. Este resumen se refiere a los resultados de una investigación llevada a cabo con 74 profesores de matemáticas de secundaria a los que se les aplicó un cuestionario de 65 preguntas abiertas, dicho instrumento ya había sido diseñado y validado para realizar un estudio con estudiantes universitarios. Posteriormente se realizaron entrevistas a 6 profesores, tomando como base las respuestas dadas en el cuestionario. Se encontró que algunas de estas dificultades son similares a las que presentan los estudiantes.
Resumo:
Ante el interés creciente por álgebra lineal y las dificultades que aún continúan presentando los estudiantes en el aprendizaje de los objetos abstractos de esta disciplina, el presente trabajo pretende apoyarse en el marco de la geometría sintética para introducir los espacios analíticos R1, R2 y R3 y poder sólo después realizar las generalizaciones pertinentes a Rn. Un análisis histórico permite comprender ciertas dificultades de los estudiantes y a la vez proporciona elementos para construir secuencias de actividades con miras a introducir los conceptos de álgebra lineal de tal manera que los estudiantes perciban la necesidad del formalismo, presentando todos los sentidos posibles de los conceptos en sus diferentes modos de representación, en particular conectarlo con sus conocimientos anteriores sobre los sistemas de ecuaciones lineales y la geometría. Esta investigación se desarrollará con estudiantes de primer año universitario, cuando llevan por primera vez álgebra lineal y el concepto de espacio vectorial es enseñado formalmente como una definición muy amplia que involucra varios conceptos previos.
Resumo:
En la entrega del N° 35 nos preguntábamos si la evolución histórica del problema nos podría servir de guía para planificar una actuación en clase, siguiendo el modelo Van Hiele. ¿Cómo describir este modelo en pocas líneas?
Resumo:
En este trabajo se aborda una trayectoria de investigaciones considerando el concepto de derivada. En primer lugar, se presentan investigaciones sobre el desarrollo de la comprensión del concepto y, posteriormente, investigaciones centradas en el aprendizaje de estudiantes para profesor de matemáticas de lo que se considera conocimiento adecuado para la enseñanza de dicho concepto. Esto conlleva, en cierto modo cierta transferencia del conocimiento en el sentido de que dichas investigaciones aportan información para el diseño de módulos de formación, permitiendo realizar investigaciones en el contexto de aula sobre el aprendizaje de los futuros profesores.
Resumo:
El concepto de continuidad está íntimamente ligado a los de infinito y límite. En este trabajo se presenta primeramente un breve recorrido por las ideas que influyeron históricamente en la construcción matemática del concepto de continuidad a lo largo de la historia del pensamiento humano y se analizan las concepciones que sobre este concepto tienen los alumnos a las distintas edades, con la finalidad de clarificar ideas y buscar nuevas estrategias didácticas para abordar el tema del continuo.
Resumo:
A lo largo de esta lección hemos presentado una variedad de consideraciones interconectadas, cuyo objeto común ha sido la relación del número natural con los modos de pensamiento y de actuaciones prácticas de mujeres y hombres. Nuestra reflexión se ha centrado en tres elementos fundamentales:Unos instrumentos conceptuales: sistema de los números naturales, simbólicamente estructurado; su evolución histórica y su análisis conceptual.Los modos de uso de este sistema simbólico: funciones cognitivas, así como los estudios que se han propuesto delimitar y caracterizar tales funciones como parte del pensamiento humano, su evolución y las condiciones para su aprendizaje.Los campos de actuación: fenómenos, cuestiones y problemas, en los que se pone en práctica y se trabaja con este sistema; especial importancia hemos concedido a la reflexión crítica en relación con el período escolar.
Resumo:
A partir de la historia de la matemática se pueden diseñar actividades que favorezcan la formación humanística y matemática de nuestros estudiantes. En este caso se presentan algunos acercamientos de la civilización China a la noción de aproximación, y con base en estos se muestra parte de una actividad que busca fortalecer la comprensión de esta noción básica del cálculo. Este trabajo es un producto parcial del grupo de estudio en Historia de la Matemática del Departamento de Matemáticas del Colegio Gimnasio Moderno. En este momento el grupo centra su atención en el estudio de desarrollos históricos que estén relacionados con nociones básicas del Cálculo como aproximación, variación, optimización y predicción; así como en el diseño de actividades que favorezcan la comprensión de estas nociones. La razón por la cual nos interesa el Cálculo, es porque es una de las áreas de la matemática que mayor dificultad presenta a los estudiantes, ya que sus conceptos se basan en nociones de inexactitud y cambio que evidentemente chocan con la concepción tradicional de la matemática como una ciencia exacta. Por ejemplo, la comprensión del concepto de límite en un sentido riguroso es extremadamente difícil y casi imposible para los estudiantes debido a que la noción en la que se sustenta, la aproximación, produce tal incertidumbre que los mismos profesores la han expulsado de aquella variedad de nociones básicas que deben ser enseñadas en la escuela. Pero además, la estructura conceptual de ésta noción es tan compleja, que requiere de un tiempo prolongado y del uso de diferentes vías didácticas para ser plenamente comprendida (García et al., 2002). Haciendo un estudio de los desarrollos matemáticos de la civilización China nos encontramos con que en ella se establecieron algunos procedimientos de aproximación para calcular áreas de regiones curvilíneas, así como un método para aproximar tanto como se quiera la raíz cuadrada de un número; también obtuvieron la fórmula del volumen de la esfera por un método que antecede a la técnica de Cavalieri en doce siglos aproximadamente. Este taller pretende por una parte, mostrar los acercamientos de la civilización China a algunas nociones básicas del cálculo, específicamente la aproximación y la variación; así como hacer evidente la presencia de procesos infinitos en algunos desarrollos matemáticos de esta civilización. Por otra parte, busca presentar algunas actividades diseñadas desde una perspectiva histórica, es decir, un diseño que resalta la dimensión humana del conocimiento matemático, sus conexiones con otros ámbitos de la cultura, el contexto en el que nace y evoluciona, y por supuesto, que busca fortalecer la formación matemática de nuestros estudiantes. En la primera sesión, mostraremos los acercamientos a las nociones básicas de aproximación y/o variación de la civilización China. En la segunda sesión presentaremos algunas actividades inspiradas en los desarrollos de las civilizaciones anteriormente mencionadas.
Resumo:
Las deducciones que a lo largo de la historia se han realizado en torno al teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Algebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.
Resumo:
El presente trabajo es una investigación en curso. Una fuente de dificultades didácticas es la interpretación geométrica de la derivada, en donde la recta tangente no se considera como objeto de estudio. Nuestro planteamiento es que al construir la recta tangente desde una perspectiva variacional puede servir como una introducción a la derivada desde un punto de vista gráfico, lo cual implica también un rediseño del Discurso Matemático Escolar. Utilizamos la teoría de la Socioepistemología, en la cual se plantea que el uso de herramientas matemáticas para resolver actividades organizadas intencionalmente con la intención de resolver un problema, son una práctica, normadas por una práctica social. El escenario histórico nos ha servido para reconocer la práctica de la tangente variacional. Actualmente hemos implementado un método para obtener nuestros datos el cual nos servirá para que un futuro próximo podamos analizarlos y obtener conclusiones.