24 resultados para Contexto de justificación
Resumo:
El problema de investigación se plantea en cómo utilizar el Cabri II Plus para lograr la transposición didáctica de la noción de límite a contextos computacionales, transposición informática (Balacheff, 1994). Construyendo límites de sucesiones y límites de funciones, visualizamos el concepto permitiendo la comprensión de la definición formal, la validación de propiedades y enunciados matemáticos y la activación de un proceso cognitivo marcado por la relación dialéctica entre percepción y conceptualización durante la interacción con la interfase del sistema (Moreno, 2002), promoviendo una transformación a nivel epistemológico de la experiencia matemática del estudiante. Las actividades propuestas articulan las representaciones algebraicas, gráficas y numéricas de la noción de límite, a través del movimiento, visualizando el cambio gracias a la geometría dinámica.
Resumo:
Uno de los objetivos del presente trabajo es detectar los motivos por los cuales el concepto de promedio aritmético está tan arraigado en el estudiante que no puede desprenderse de él y lo interpola a otros ámbitos del quehacer matemático, específicamente al probabilístico. Se busca entender, mediante la línea de investigación conocida como la construcción social del conocimiento matemático, por qué los alumnos tienen problemas en aceptar y reconocer al valor esperado, conocido también como media o esperanza matemática, como un promedio en un nuevo escenario con nuevas características.
Resumo:
Bajo la visión socioepistemológica, las prácticas sociales se reconocen como fundamentación del conocimiento matemático. Estas se reinterpretan para lograr su ingreso al sistema didáctico a través de situaciones en las que dichas prácticas se transforman en el argumento. Ello permite hablar de una resignificación del conocimiento matemático (periodicidad) en un contexto argumentativo (interpretación situacional de la práctica predicción). Nuestra propuesta es que lo periódico permitirá percibir articulaciones al seno del saber matemático.
Resumo:
En el presente trabajo se muestra un estudio descriptivo del tratamiento justificativo de las reglas y técnicas de derivación en los libros de texto de 3o de BUP, COU correspondientes a la LGE, y 1o y 2o de Bachillerato de LOGSE y LOE. En primer lugar presentamos una adaptación del marco teórico que hemos desarrollado para el estudio de los esquemas de prueba presentes en los libros de texto al objeto de estudio de este trabajo, las reglas y técnicas de derivación. A continuación se muestra el análisis realizado, indicando las peculiaridades encontradas en el estudio. Por último, se consideran algunas reflexiones sobre las implicaciones que la diversidad de presentación y tratamiento de estas reglas puede tener en la enseñanza, por un lado del concepto de derivada y, por otro lado, de la demostración.
Resumo:
Es urgente tratar los contenidos matemáticos de forma que docentes y estudiantes sientan la necesidad de aprender matemáticas para poder dar solución a los múltiples problemas que a nivel mundial plantean servicios tales como salud, distribución, energía, conservación del agua, etc, así como la industria moderna; en calidad, competitividad y automatización. Corresponde a los matemáticos educativos demostrar que es necesario ampliar el horizonte teórico para dar solución a problemas complejos y hacer uso de modernas técnicas computacionales para realizar los cálculos. La idea es a partir de la necesidad, buscar el respaldo técnico y teórico que permitan cumplir el objetivo de dar solución al problema. De esta forma el objetivo del estudiante lo motiva a aprender.
Resumo:
La matemática en el contexto de las ciencias es una línea de investigación que reflexiona acerca de la vinculación que debe existir entre la matemática y las ciencias que la requieren, está constituida por cuatro fases: la curricular, la didáctica, la epistemológica y la cognitiva. En este artículo se presenta la fase didáctica. Esta fase incluye una estrategia didáctica (denominada matemática en contexto)que presenta conocimientos integrados a los alumnos a partir de una situación problémica de otras disciplinas, que al tratar de resolverla el estudiante se encuentra con la necesidad de tener nuevos conocimientos, lo cual da apertura a que el estudiante esté interesado en otros tópicos matemáticos. Para lograr la vinculación de la matemática con otras ciencias se describe un proceso metodológico a través de seis de las etapas de la matemática en contexto. Con esta estrategia el modelar matemáticamente está presente todo el tiempo, por lo que se presentan los resultados de una investigación que caracteriza y clasifica a los modelos matemáticos. Asimismo, los modelos son un elemento común a la matemática en contexto y a la resolución de problemas, por lo que se muestran las diferencias sustancias entre ambas estrategias.
Resumo:
Este artículo presenta algunos resultados de investigación, que se viene desarrollando bajo el método de estudio de caso en una institución rural de la Región de Urabá, con el propósito de analizar un proceso de modelación matemática. Esto fue posible, al permitirles a los estudiantes generar modelos lineales desde una situación en el contexto del cultivo plátano. Y al final, se presentan algunos resultados, resaltando el papel del contexto cotidiano incluido en la enseñanza de las Matemáticas, para mediar el uso de las letras como variables, en correspondencia entre el contexto cotidiano y las matemáticas.
Resumo:
En este trabajo se estudia la influencia y el papel de un aspecto del contexto exterior producido por elecciones de tipo lingüístico. Cuando el lenguaje escogido es de tipo coloquial, las primeras preguntas son informales, sobre aspectos extraescolares, y la discusión numérica atañe a N, hablamos de contexto natural. Este contexto parece inducir, en el sujeto sometido a la prueba, la convicción implícita de que debería contestar según modelos intuitivos, que dependen de la competencia que adquirió en los primeros niveles de escolarización o de modelos ingenuos. También examinamos el problema de la conciencia de los alumnos en situaciones de dificultad.
Resumo:
Hace ahora cinco años que comenzó a implantarse la educación secundaria obligatoria en algunos centros de diferentes lugares. Desde entonces, el número de estudiantes y de centros que se han incorporado a esta etapa educativa ha ido creciendo progresivamente. Tenemos ya alguna experiencia que nos permite hacer un primer balance de sus características más relevantes y sus efectos en relación con la enseñanza y el aprendizaje de las matemáticas y de las condiciones en las que se ha ido poniendo en marcha.