25 resultados para Balanças (Instrumentos de medição)
Resumo:
En este trabajo en proceso presentamos los resultados de la primera fase de nuestra investigación (análisis preliminar), que pretende reconocer a la práctica o la estrategia de la simulación que realizan los estudiantes al momento de resolver problemas de probabilidad y con ello las cuestiones en probabilidad será de gran sencillez teniendo a la herramienta de la simulación. En ello sostenemos que la práctica de la simulación enriquece al conocimiento matemático del ser humano y en particular a la probabilidad.
Resumo:
Esta investigación se propone responder a interrogantes iniciales que surgen en torno al planteamiento y ejecución de programas de actualización y capacitación, con la intensión de contribuir, en buena medida, a enriquecer nuestro conocimiento de lo que ocurre en el aula. En lo particular, centramos la atención en el papel de las explicaciones en la clase de matemáticas cuando se pretende introducir conceptos geométricos, específicamente la noción de semejanza en el nivel medio superior. Consideramos un modelo de investigación cualitativa, basada en el método etnográfico que toma a la observación como técnica de registro. Los participantes en la investigación son profesores en servicio del nivel medio superior.
Resumo:
En este trabajo se muestra la implementación, los resultados y las conclusiones de una prueba piloto para evaluar el valor propedéutico del aprendizaje matemático de todo el ciclo medio, teniendo en cuenta los requerimientos del ingreso universitario.
Resumo:
Los esquemas lógico-matemáticos desarrollados durante el crecimiento y formación dentro de un sistema educativo podrían influir y marcar cierta evolución sobre los sesgos del pensamiento probabilístico de los estudiantes, aun cuando éstos no reciban instrucción formal en probabilidades. Esta investigación ha sido realizada con 152 estudiantes de nivel medio entre 13 y 17 años. Los objetivos de la misma han sido: (a) identificar y analizar la influencia de esquemas lógico-matemáticos sobre sesgos intuitivos en juicios bajo incerteza cuando no existe conocimiento probabilístico formal y (b) analizar la evolución etaria de estos procesos. La metodología utilizada es mixta. Los instrumentos han sido cuestionarios con preguntas orientadas a la detección de algunos sesgos intuitivos y los esquemas actuantes.
Resumo:
Este trabajo complementa otras investigaciones que evidencian las “disfunciones escolares” que el operador raíz cuadrada presenta en el tránsito del contexto aritmético al algebraico y del algebraico al funcional. Juárez (2007) muestra cómo estudiantes de bachillerato en el estado de Guerrero, México, no logran detectar la problemática que se genera al considerar a las operaciones de potenciación y radicación como inversas sin considerar ninguna restricción. En este trabajo mostramos el rediseño de la secuencia de actividades de Juárez y los resultados de su aplicación a estudiantes de bachillerato en un centro de estudios científicos y tecnológicos (CECyT) del Instituto Politécnico Nacional (IPN) en el Distrito Federal, México. Mostraremos la nueva secuencia y las consideraciones que hicimos para modificarla, así como las respuestas de algunos estudiantes. Mostraremos que el considerar a las operaciones de potenciación y radicación como inversas permea en el conocimiento de los estudiantes.
Resumo:
La evaluación permite determinar cómo aprenden los estudiantes, qué aprenden y qué conocimientos requeridos tienen. También sirve para promover un aprendizaje significativo. Se puede evaluar procesos de pensamiento, estrategias de resolución de problemas, uso de materiales y recursos, comunicación oral y escrita, actitudes, entre otras cosas. Permite que el docente pueda mejorar el proceso de enseñanza, evaluar las tareas que propone y su actuación. La evaluación se puede realizar a través de diferentes instrumentos: prueba diagnóstica, diario del docente, rubricas, diario del estudiante y exámenes.
Resumo:
Se presenta el manejo de la prensa como medio didáctico para lograr que los alumnos vean a la Matemática inmersa en su vida cotidiana, despertando en ellos su interés en la materia, logrando transformar noticias, comentarios, anuncios, etc., de la prensa, en problemas para aplicar en ellos el quehacer matemático: cómo enfrentarlos, la búsqueda de vías de solución y la resolución exitosa de los mismos. Utilizar los medios de información del ámbito social como recurso didáctico nos permitirá cambiar esquemas tradicionales de la enseñanza por métodos y técnicas de participación activa bajo un enfoque constructivista, el objetivo del trabajo es: Ofrecer indicaciones metodológicas para propiciar en los estudiantes la utilización de modelos matemáticos en situaciones prácticas, a través del uso de la prensa.
Resumo:
El pasaje de la unidad al cero, parece ser un paso intelectual sencillo, sólo si no nos detenemos a pensar acerca de las dificultades que involucran su comprensión. Existe una gran complejidad en este paso, tanto desde el punto de vista histórico como conceptual. La percepción de la relación entre el vacío, la nada y la necesidad de representarla no fue históricamente inmediata ni sencilla. La invención del cero estuvo muy lejos de ser evidente. Se propone una breve recorrida por la historia del surgimiento del cero y sus funciones, para lograr hacer más comprensibles las dificultades que presenta la comprensión de este concepto.
Resumo:
Esta investigación se realizó con alumnos de Nivel Medio Superior (NMS) que habían cursado la asignatura de Matemáticas I y que tenían dificultades con la comprensión del concepto de número racional. El propósito fue poner en escena situaciones didácticas, para explorar sus efectos en la comprensión de este concepto. Para tener información precisa de cuál es el estado que guardaba este conocimiento en los alumnos, se hizo un diagnóstico, por lo que se diseñaron y validaron las situaciones que se utilizarían tanto en el diagnóstico como en la puesta en escena. En su diseño se consideraron los contenidos de aritmética de NMS, diferentes sistemas de representación y el modelo utilizado por Sierpinska sobre los actos de comprensión de conceptos matemáticos. Al comparar los resultados que se obtuvieron en el diagnóstico con los de la puesta en escena de las situaciones didácticas, se encontró que: el permitir que los alumnos conocieran diferentes formas de representar a los números racionales, el significado de cada una de ellas, así como convertir o traducir unas representaciones en otras a través de las situaciones didácticas, propició la construcción de este concepto y mejoraran su comprensión.
Resumo:
Este artículo es una breve descripción del proyecto innovación educativa llevada acabo en los colegios públicos de Badajoz, que obtuvo el primer premio Joaquín Sama a la innovación educativa convocado por la consejería de educación y juventud de la junta Extremadura. Culminó con una exposición en ICME de Sevilla en julio de 1996. Se investiga el uso y se recogen unidades e instrumentos de medida tradicionales en Extremadura, estudiando su evolución hasta llegar al sistema métrico decimal, equivalencias, uso actual incluso la distribución geográfica.