254 resultados para Geometría proyectiva
Resumo:
El número de oro Φ=1,618... es al plano, lo que el número plástico P=1,2471... es al espacio. Ver esto es el objetivo final de este clip. Pero permitan primero una breve visita a la familia de los números metálicos en la cual destaca con luz propia el áureo.
Resumo:
El próximo mes de junio cerraré, al menos por el momento, esta sección y me gustaría despedirme con el relato de una historia muy especial. A lo largo de casi treinta años de profesión he ido guardado en un arcón, como los piratas de antaño, un montón de joyas encontradas en mis travesías matemáticas, logrando acumular un botín bastante suculento. Una de mis piezas favoritas es esta historia, una historia que ojalá me hubiesen contado cuando me enseñaron por primera vez los rudimentos del álgebra lineal. De hecho, si hoy tuviese que impartir clase de álgebra lineal en bachillerato o en un primer curso de cualquier carrera científica o técnica y se me permitiese hacerlo a mi manera, articularía mis clases en torno a esta historia. Sus distintos episodios, todos ellos verídicos, me han ido llegando a través de los años de la mano del matemático Mario Fernández Barberá, del escultor José Luis Alexanco y del poeta Ramón Mayrata.
Resumo:
Hace ya tiempo que salimos de Diomira, Isidora, Dorotea, Zaira y Anastasia, pero no las hemos olvidado. Y si la memoria no logra recuperar las formas, sonidos y luces de sus calles podemos recurrir al registro documental del pensamiento, la escritura.
Resumo:
Entre 1298 y 1299 un mercader veneciano preso en Génova dictó sus memorias a un compañero de cárcel. Lo que había visto y vivido en el imperio de Kublai Jan eran maravillas difíciles de creer para el mundo occidental al que pertenecía. Se dice que algunas de ellas fueron inventadas, pero la mayoría han sido corroboradas a lo largo del tiempo. Esa obra se llamó Libro de las maravillas y fue publicada por primera vez en 1477. Su autor, Marco Polo.
Resumo:
En este artículo analizamos los tipos de tareas que se pueden realizar con Thesaurus, un diccionario multimedia de matemáticas en red, utilizando el aula de informática para la clase de matemáticas en la ESO. Asimismo valoramos su influencia en el desarrollo de competencias matemáticas. El estudio se centra en el diseño y puesta en práctica de unidades didácticas de geometría con Thesaurus y en el análisis de los resultados de pruebas piloto realizadas por distintos grupos de alumnos.
Resumo:
Por quinta vez puso cuatro motas de tinta en el papel, les puso nombres (A, B, C, D) y los unió con segmentos para formar un cuadrilátero. Luego señaló los puntos medios de sus cuatro lados y los conectó formando otro cuadrilátero (P, Q, R, S). Ahí estaba el problema. Ese cuadrilátero interior siempre resultaba ser un paralelogramo pusiera como pusiera los cuatro puntos originales. ¿Acaso había orden en el caos? Por un momento pensó que quizá había truco, que tal vez sucedía así porque la gente ponía los puntos de formas similares. Pero ya había probado configuraciones muy raras, incluso dejó que los segmentos del cuadrilátero ABCD se interceptasen, y siempre obtenía idéntico resultado. No, lo que parece cumplirse para cualquier caso no es ningún truco, sino un teorema que demostrar.
Resumo:
L a exposición temporal Albert & Blas Einstein y Cabrera, del Museo Elder de la Ciencia y la Tecnología de Las Palmas de Gran Canaria, comienza presentando una maqueta versión 3D de la obra “Relatividad” de M.C. Escher. Las ventanas de la obra contienen pantallas que emiten imágenes que representan cómo se ha manipulado la imagen de A. Einstein en los medios, en el cine, en la publicidad, etc.
Resumo:
Una de las características de las matemáticas que hacen difícil el enseñarlas, es su doble naturaleza de herramienta para construir cosas y herramienta para pensar sobre las cosas. A lo largo de este número y el siguiente, reflexionaremos sobre la manera en que la obra del grabador holandés Escher ilustra esta doble naturaleza de las matemáticas.
Resumo:
Nos preguntábamos en algún momento del artículo anterior de esta serie si realmente el teorema de Pappus generaliza el de Pitágoras.
Resumo:
Fue el último en poseerla quien, instantes antes de perderla para siempre y movido por una presunción ya del todo instintiva, bautizó la ciudad con el nombre de Memoria grafiando esa palabra en las fachadas de las avenidas. Presumió que en un futuro, muy lejano quizá pero alcanzable, y a pesar de los trazos ya inseguros de su escritura afectada, alguien podría leerla y recobrar la lucidez.
Resumo:
Este trabajo pretende plasmar el estudio de las cónicas como formas geométricas que se pueden generar de múltiples formas y que verifican propiedades que son utilizadas en la vida cotidiana. Debido al nivel en el que se imparte este tema, 4º de ESO, nos hemos centrado en la distinción a partir de la generación y características de cada cónica. Para llevar a cabo esta tarea se han utilizado elementos manipulables, algunos de los cuales pueden ser generados por los propios alumnos, para asentar mejor en ellos las distintas definiciones y propiedades.
Resumo:
Una vez acordado el precio nos ponemos en camino. Son las ocho de la mañana y hace un día espléndido. El cielo es una sábana azul sin mácula y el verdor intenso que nos rodea justo al abandonar las bulliciosas calles de Ternate refleja la luz del astro en multitud de tonalidades deslumbrantes. La carretera serpentea arriba y abajo perfilando la costa con el mar a la derecha. Después de pasar por diversos pueblos y atravesar un bosque espeso la vegetación desaparece de repente al llegar a Batu Angus (roca abrasada), una cicatriz colosal e imborrable, un río pétreo vestigio de la erupción del Gamalama en el siglo XVIII.
Resumo:
El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.
Resumo:
Nos son tan habituales algunas cosas que no nos sorprendemos ante ellas ni nos paramos a pensar acerca de su significado profundo o sobre la maravilla de su gestación, perdida a veces en la noche de los tiempos. Considerado en abstracto, como una relación entre superficies de figuras descontextualizadas, ¡no es nada evidente el teorema de Pitágoras!, pero hay muchos problemas de tipo práctico que obligan a pasar obligatoriamente por el ángulo recto. ¿Cómo construir si no, por ejemplo, un edificio de una mínima prestancia? Las divulgaciones al uso han justificado siempre su origen en la necesidad de medir terrenos después de las crecidas de los grandes ríos en cuyas orillas se asentaron las primeras civilizaciones sedentarias. Se supone también que habría que definir retículas ortogonales y que ello llevaría a catalogar ternas de números que permitieran construir ángulos rectos. Cuando se contempla desde un montículo la hermosa anarquía distributiva que el devenir de los tiempos ha producido en nuestros campos, parece claro que ese afán regulador sólo puede darse bajo un fuerte poder centralizado. Así pues, quizás haya que incluir el teorema Kou-Ku —junto, por ejemplo, el monoteísmo y los primeros códigos legislativos— entre las primeras consecuencias de la aparición del Estado (con mayúsculas, claro).
Resumo:
¿Dónde están las cosas? ¿Dónde estoy yo? Aquí. Estoy aquí y ahora. Doy un paso y ya no estoy, ni aquí ni ahora, sino más lejos, y después. ¿Qué distancia me separa de mí mismo? Ninguna, cero, nada. O cuarenta mil kilómetros, la cintura del planeta. O pi multiplicado por veinte mil millones de años luz, el perímetro del Universo, más o menos. O la longitud de la trayectoria de un vuelo imaginario y arbitrario que partiendo de mi, aquí y ahora, volviera a mí, aquí, pero después: ¿Un dedo? ¿Un metro? ¿El infinito?