5 resultados para Problemas de generalización lineal
Resumo:
En la primera parte de este trabajo se analizan las características generales del proceso de formación, desarrollo y generalización conceptual. Se analiza, además, la importancia de utilizar la resolución de problemas como un medio para facilitar estos procesos. En la segunda parte, a partir de una experiencia docente, se muestra el comportamiento de dos grupos de alumnos que tomaron parte en el proceso de formación, desarrollo y generalización del concepto de media numérica.
Resumo:
Este reporte trata sobre una investigación realizada en la Universidad de Camagüey que se planteó como objetivo la elaboración de un programa analítico de la asignatura álgebra lineal y geometría analítica para la carrera de Ingeniería Mecánica que permitiera elevar la eficiencia del mismo para la solución de problemas y tareas docentes por parte de los estudiantes. Los métodos empleados fueron tanto teóricos como empíricos, mediante ellos y a partir del problema considerado se constató que la concepción existente del Programa Analítico de la asignatura no es adecuado para asegurar el balance entre su nivel de generalización teórica y la solución de problemas con el consecuente desarrollo de habilidades prácticas profesionales e investigativas para garantizar el encargo social. En la investigación se demostró que la articulación teórica y práctica empleando el enfoque sistémico y la teoría de la actividad, permitió dar base teórica a la integración de los temas del álgebra lineal y geometría analítica. Además se rediseñó el programa de la asignatura y su aplicación contribuyó a elevar la eficiencia del proceso de enseñanza-aprendizaje de la misma.
Resumo:
En este trabajo se presentan las experiencias desarrolladas con el objetivo de contribuir a la formación de habilidades para la resolución de problemas en estudiantes de primer año de la carrera de Licenciatura en Matemática. Concretamente, se presenta la propuesta de actividades a desarrollar dentro del contexto de la asignatura “Seminario de Problemas I", con la que se inicia el programa de la disciplina “Práctica Profesional del Matemático”, existente en el plan de estudio de la carrera en las universidades cubanas desde el curso 1990-91 (Plan de Estudio “C” de la carrera de Matemática). Uno de los propósitos del curso es recorrer, a partir de problemas físicos, geométricos, algebraicos, etc., diferentes etapas de la investigación matemática desde la formulación del problema; la obtención del modelo matemático (por ejemplo, determinar las raíces de una ecuación); los métodos de resolución (exactos y aproximados: numéricos y/o analíticos) y su implementación computacional; la utilización de técnicas para verificar la corrección de los resultados obtenidos (compatibilidad con las unidades de magnitud, estudio de casos limite, etc.) y su interpretación. Otro objetivo importante que persigue este curso es contribuir al desarrollo de hábitos de investigación científica mediante la orientación de un trabajo de curso sobre aspectos de la vida y obra de algún matemático. La exposición y defensa de los resultados de sus búsquedas, ante el colectivo de estudiantes, permite desarrollar sus habilidades de expresión oral y su formación cultural en la especialidad.
Resumo:
En el presente trabajo se propone una nueva estrategia para la formulación de problemas matemáticos, a partir de una idea desarrollada por Brown y Walter (1990). Esta estrategia tiene una estructura no lineal y consta de seis acciones, en las cuales se concatena un subsistema de operaciones constitutivas. El aprendizaje de esta estrategia, sobre la base de un sistema de técnicas aisladas por otros autores (véase Kilpatrick. 1987), ha sido experimentado en la formación del profesor de Matemática del Instituto Superior Pedagógico “José de la Luz y Caballero”. Para ello se ha propuesto una metodología para caracterizar el proceso de formulación, y se han elaborado nuevos instrumentos como el que resulta de extender los «episodios gráficos» de Schöenfeld al conjunto de acciones propuestas. Los resultados obtenidos constataron que la implementación de dicha estrategia favorece el proceso de formulación de problemas. También se corroboró la existencia de una estrecha interrelación entre los procesos de formulación y resolución de problemas, lo cual ha sido advertido por varios autores (Brown y Walter, 1993; Silver, 1994 y 1996; English, 1998).
Resumo:
Esta investigación fue la tesis de maestría de la autora, está basada en el estudio de las creencias de los alumnos del nivel medio superior con talento en las ciencias exactas. Fundamenta la influencia del sistema de creencias en el comportamiento humano y en especial en la resolución de problemas matemáticos. En su parte fundamental muestra cómo en la práctica pueden transformarse y/o formarse el sistema de creencias en los alumnos mediante diferentes actividades encaminadas a ello, dentro de la propia clase. Dentro de ellas el trabajo con los problemas, afrontamiento, relo, Prueba de desarrollo y otras. Obteniendo como resultado un mayor desempeño en la resolución de problemas, con la utilización de estrategias heurísticas y metacognitivas adecuadas, así como desarrollo del pensamiento. Para ello utilizamos la investigación-acción como método de investigación, como proceso educativo y como medio para adoptar decisiones. Los resultados de esta investigación ponen al servicio de los profesores un potente instrumento de transformación de la esfera motivacional valorativa para el caso de la solución de problemas matemáticos.