58 resultados para No-hacer
Resumo:
El presente reporte de investigación de tipo cualitativo, tiene por objeto dar a conocer, como parte de la investigación, resultados relacionados con los procesos de generalización que se presentan en alumnos de edades 14-15 años al tratar con sucesiones figurativas, en donde el patrón matemático se comporta en forma lineal y cuadrática. Se señala que el hacer uso de patrones, desarrolla el pensamiento algebraico, así como también permite a los estudiantes desarrollar la comprensión del concepto como establecer relaciones matemáticas. Como parte de la perspectiva teórica se ha empleado el Modelo Teórico Local, considerando tres de los cuatro componentes: Competencia formal, modelo de enseñanza y procesos cognitivos.
Resumo:
El uso de software de geometría dinámica en el aula de clase es una herramienta que posibilita el desarrollo de diferentes habilidades y destrezas en el campo geométrico y potencializa otras tales como la visualización, la elaboración de conjeturas, la argumentación, la construcción de definiciones y la formalización de argumentos. El presente trabajo busca compartir la experiencia alcanzada con la aplicación de tres actividades exploratorias con polígonos y ver las posibilidades y limitaciones que el software ofrece en el desarrollo conceptual alrededor de los mismos.
Resumo:
Desde nuestra perspectiva, la construcción del conocimiento está vinculada con el ejercicio de las prácticas sociales (Arrieta, 2003). Así, las herramientas trigonométricas, en particular el seno, se encuentran asociadas a las prácticas donde son utilizadas. La herramienta seno, se encuentra relacionada con diferentes prácticas, que en uno u otro contexto son prioritarias. Por ejemplo, la herramienta seno como modelo periódico se encuentra asociado a las prácticas de comunidades de ingenieros en electrónica, mientras que en otras comunidades el seno es utilizado como razón de dos lados de un triángulo rectángulo. La forma en cómo vive en contextos escolares, muestra que generalmente no es utilizada como herramienta y que aún cuando se introduce como razón trigonométrica el seno esta desligado de la práctica de hacer semejanza con triángulos.
Resumo:
Diversos estudios sobre tecnologías educativas para la docencia superior, formulan la participación activa y aprendizajes significativos, complementado con trabajo interactivo y autoestima positiva. Investigadores en educación afirman que “Construimos significados cuando relacionamos las nuevas informaciones con nuestros esquemas previos de comprensión de la realidad”. Por tanto, se propone incluir los contenidos dentro de situaciones naturales que impliquen el enfrentamiento del alumno con tareas que se asemejen a las complejas situaciones de la vida real y profesional. Esto apoyado con tecnología, donde el objetivo sea desarrollar actividades que permitan al alumno descubrir relaciones, propiedades, y donde desarrolle la capacidad de análisis, creatividad y una actitud crítica hacia los resultados.
Resumo:
Dufour inventó un sistema de representación geográfica basado en principios topológicos en lugar de los principios geométricos de los mapas, croquis y planos habituales. La llamada marcha Doufour, aunque de origen militar, se emplea actualmente en actividades excursionistas y alpinistas para moverse por la montaña, pero es fácilmente adaptable a recorridos urbanos. Posee enormes posibilidades didácticas de carácter abstracto, obligando a los usuarios a desarrollar no sólo pautas de orientación sino también de razonamiento lógico sistemático. Ha sido utilizada con éxito en pruebas de calle de olimpiadas matemáticas.
Resumo:
En este trabajo mostramos la importancia del razonamiento inductivo en la enseñanza y aprendizaje de las matemáticas en el nivel de Secundaria y, como consecuencia, la necesidad que tienen los futuros profesores de realizar tareas que fomenten el uso, y por tanto el conocimiento, de este tipo de razonamiento. Pensamos que la reflexión sobre una metodología en la que el razonamiento inductivo esté presente, se debe hacer desde la formación inicial de profesores, y más concretamente desde la didáctica de las matemáticas. Con este planteamiento, presentamos los objetivos que se pueden contemplar desde esta disciplina en la formación de profesores de matemáticas.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
A partir de la historia de la matemática se pueden diseñar actividades que favorezcan la formación humanística y matemática de nuestros estudiantes. En este caso se presentan algunos acercamientos de la civilización China a la noción de aproximación, y con base en estos se muestra parte de una actividad que busca fortalecer la comprensión de esta noción básica del cálculo. Este trabajo es un producto parcial del grupo de estudio en Historia de la Matemática del Departamento de Matemáticas del Colegio Gimnasio Moderno. En este momento el grupo centra su atención en el estudio de desarrollos históricos que estén relacionados con nociones básicas del Cálculo como aproximación, variación, optimización y predicción; así como en el diseño de actividades que favorezcan la comprensión de estas nociones. La razón por la cual nos interesa el Cálculo, es porque es una de las áreas de la matemática que mayor dificultad presenta a los estudiantes, ya que sus conceptos se basan en nociones de inexactitud y cambio que evidentemente chocan con la concepción tradicional de la matemática como una ciencia exacta. Por ejemplo, la comprensión del concepto de límite en un sentido riguroso es extremadamente difícil y casi imposible para los estudiantes debido a que la noción en la que se sustenta, la aproximación, produce tal incertidumbre que los mismos profesores la han expulsado de aquella variedad de nociones básicas que deben ser enseñadas en la escuela. Pero además, la estructura conceptual de ésta noción es tan compleja, que requiere de un tiempo prolongado y del uso de diferentes vías didácticas para ser plenamente comprendida (García et al., 2002). Haciendo un estudio de los desarrollos matemáticos de la civilización China nos encontramos con que en ella se establecieron algunos procedimientos de aproximación para calcular áreas de regiones curvilíneas, así como un método para aproximar tanto como se quiera la raíz cuadrada de un número; también obtuvieron la fórmula del volumen de la esfera por un método que antecede a la técnica de Cavalieri en doce siglos aproximadamente. Este taller pretende por una parte, mostrar los acercamientos de la civilización China a algunas nociones básicas del cálculo, específicamente la aproximación y la variación; así como hacer evidente la presencia de procesos infinitos en algunos desarrollos matemáticos de esta civilización. Por otra parte, busca presentar algunas actividades diseñadas desde una perspectiva histórica, es decir, un diseño que resalta la dimensión humana del conocimiento matemático, sus conexiones con otros ámbitos de la cultura, el contexto en el que nace y evoluciona, y por supuesto, que busca fortalecer la formación matemática de nuestros estudiantes. En la primera sesión, mostraremos los acercamientos a las nociones básicas de aproximación y/o variación de la civilización China. En la segunda sesión presentaremos algunas actividades inspiradas en los desarrollos de las civilizaciones anteriormente mencionadas.
Resumo:
En este taller (de una sesión) se proponen ciertas actividades que conectan el algebra con diversas situaciones del mundo real. La idea es hacer que los presentes desarrollen las tareas para que conozcan otras alternativas para construir conceptos como tasa de cambio o pendiente, modelamiento de datos, líneas de mejor ajuste, datos atípicos, errores en experimentos, bases de ingenierías civil, uso de modelos matemáticos para hacer predicciones y cuando los modelos matemáticos no describen la realidad de los experimentos. En el taller se realizaran tres actividades: A. FORTALEZA DE LAS VIGAS B. ATANDO NUDOS C. CONSTRUCCION DEL TRIACONTRAEDRO ROMBICO (LAMPARA DANESA) El realizar estas experiencias nos ayudaran a entender los estados de conflicto que entra el estudiante a la hora de procesar, adquirir y afianzar el conocimiento
Resumo:
En muchos colegios las reuniones de área son el único espacio programado por la institución para la interacción entre profesores del área. El Colegio Santafé de Bogotá es un ejemplo de ellos. En éste, las reuniones de área tenían un carácter eminentemente informativo, situación que parecía ser la causa de que el grupo de profesores de matemáticas no estuviera suficientemente cohesionado para el trabajo y de que en las reuniones de área no se trataran temas relacionados con asuntos propios de la enseñanza de las matemáticas. Con la consciencia de que lograr el consenso del equipo de profesores en cuanto a aspectos fundamentales para la formación matemática, es el primer paso de un proceso de largo plazo para mejorar la enseñanza de las matemáticas, se realizaron acciones tendientes a iniciar ese proceso y a promover el tratamiento de temas propios de la educación matemática entre los profesores. La experiencia que se narra en este artículo da cuenta de lo que sucedió en tres reuniones de área: la primera, de motivación; la segunda, de indagación y consenso; y la última, de lectura, debate y reflexión. Entre los resultados obtenidos con las acciones implementadas vale la pena destacar que se logró dentro del grupo de profesores explicitar inquietudes u opiniones en cuanto al quehacer matemático y unificar criterios en lo referente a la formación de aspectos relevantes de la matemática. Por otro lado, el trabajo mismo de investigación deja en quien lo realiza una lección sobre el continuo cuestionamiento y reflexión que se debe hacer sobre la propia práctica.
Resumo:
Actualmente el sistema educativo brinda autonomía a las instituciones en materia de evaluación, lo que conlleva a replantear las prácticas evaluativas en procura de determinar la efectividad de la apropiación de los desempeños de los estudiantes. Además, se hace necesario hacer una revisión pedagógica que reflexione acerca de las actuaciones de los docentes frente a la evaluación del aprendizaje de sus estudiantes, de manera que puedan ser caracterizadas y revaluadas para mejorar los procesos de enseñanza al interior de su quehacer cotidiano, de esta manera nuestra investigación pretende dar respuesta al siguiente interrogante: ¿Cómo se relacionan las prácticas evaluativas de los docentes con los procesos de la enseñanza y el aprendizaje de la matemática escolar en secundaria y media?, para ello tendremos en cuenta otras preguntas orientadoras, tales como: ¿Qué entiende el profesor por evaluación del aprendizaje? ¿Qué evalúa el profesor de matemáticas en secundaria? ¿Cómo realiza dicha evaluación? ¿Para qué realiza la evaluación en matemáticas? ¿Qué uso le da a los resultados de la misma? ¿Quiénes intervienen en el proceso de la evaluación en matemáticas? ¿Qué relación se puede establecer entre la triada enseñar, aprender y evaluar en matemáticas?
Resumo:
Este artículo es respuesta a la pregunta formulada por Jeremy Kilpatrick, "¿Qué dicen la investigación y la teoría acerca de la enseñanza y el aprendizaje de las matemáticas que se plasman en los documentos de los Estándares [del NCTM] y en varias de las críticas hechas a ellos?" (Kilpatrick, 1997). Me centro aquí en aquellas necesidades de los alumnos, que según las teorías disponibles, son la fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. En este artículo se identifican diez de tales necesidades. Mi análisis se basa en el supuesto de que todas ellas son universales aunque se puedan expresar de modos diferentes en diferentes individuos y en diferentes edades. Para cada una de las diez necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto? A lo largo del artículo, señalo ciertos dilemas inherentes al proyecto de enseñar matemáticas y sostengo que aunque algunos de los problemas no parezcan solubles, quizás su impacto se pueda reducir considerablemente con sólo mantenernos conscientes de su existencia. Este artículo se ha dividido en dos partes para su presentación en la Revista. Aquí se incluye lo referente a las cinco primeras necesidades identificadas; en el siguiente número se expondrá lo relativo a las otras necesidades.
Resumo:
Esta es la segunda parte del artículo1 cuya presentación se inició en el número anterior de esta revista (pp. 95-140). Se incluye aquí lo referente a otras cinco necesidades de los alumnos, que según las teorías disponibles, son una fuerza conductora que subyace al aprendizaje humano y debe ser lograda si se quiere que éste tenga éxito. Para cada una de tales necesidades se consideran cuatro preguntas: ¿qué sabemos acerca de esta necesidad?, ¿cómo enfrentan esta necesidad los Estándares del NCTM?, ¿qué puede resultar mal al implementar las recomendaciones de los Estándares?, ¿qué se puede hacer para prevenir esto?.
Resumo:
La didáctica es una disciplina y campo de estudio donde se concretan muchos de los esfuerzos de la actividad educativa, donde se ponen en plata blanca los ideales, principios, métodos, criterios y herramientas que permiten al docente asumir la función de enseñar. ¿Cabe repensar la manera de aprender a enseñar, de cara a los requerimientos de la sociedad del conocimiento? ¿Cómo ayudar a que el docente desarrolle criterio y habilidad para tomar decisiones educativas que le permitan asumir la función de facilitador desde el lado en procesos educativos donde la diversidad y la complejidad son evidentes? ¿Cómo aprovechar para el mejoramiento de la actividad docente las oportunidades de tecnologías que son normales para los nativos digitales? ¿Cómo ayudar a que los futuros docentes y los docentes en servicio vivan experiencias docentes relevantes, indaguen sobre objetos de conocimiento que les llamen la atención, reflexionen sobre las distintas dimensiones de la experiencia educativa, socialicen con colegas y construyan colaborativamente nuevas ideas sobre cómo enseñar? En este documento proponemos hacer CLIC* en la didáctica y apostarle a ensayar el uso de video casos interactivos para esto.
Resumo:
Analizamos el sentido estructural que estudiantes de entre 16 y18 años de edad ponen de manifiesto al trabajar con expresiones algebraicas, en el contexto de la simplificación de fracciones algebraicas que involucran las igualdades notables cuadrado de la suma, cuadrado de la diferencia, diferencia de cuadrados y propiedad distributiva/factor común. La identificación y clasificación de las estrategias empleadas por los estudiantes nos permite diferenciar tres modos de actuación que evidencian diferentes niveles de sentido estructural. Este análisis nos permite distinguir un amplio espectro de niveles de sentido estructural y avanzar en la comprensión del constructo sentido estructural que informa sobre las habilidades necesarias para hacer un uso eficiente de las técnicas algebraicas en tareas escolares.