17 resultados para Exposición
Resumo:
L a exposición temporal Albert & Blas Einstein y Cabrera, del Museo Elder de la Ciencia y la Tecnología de Las Palmas de Gran Canaria, comienza presentando una maqueta versión 3D de la obra “Relatividad” de M.C. Escher. Las ventanas de la obra contienen pantallas que emiten imágenes que representan cómo se ha manipulado la imagen de A. Einstein en los medios, en el cine, en la publicidad, etc.
Resumo:
En este artículo se comenta una experiencia extraacadémica realizada por un grupo de alumnos universitarios de matemáticas, juntamente con su profesor, en el marco de la semana de las matemáticas organizada por la facultad de Matemáticas de Sevilla para conmemorar el Año Mundial de las Matemáticas (Año 2000). La citada experiencia consistió en la realización y montaje de una exposición de curvas y superficies, cuyos objetivos generales, desarrollo y conclusiones finales constituyen la base de este trabajo.
Resumo:
Concebida por un equipo de investigadores y de enseñantes de matemáticas del centro de Francia (Orléans, Tours, Bourges), agrupados en los IREM (Instituto para la investigación de la enseñanza de las matemáticas) y en la APMEP (Asociación de Profesores de Matemáticas de la Enseñanza Pública), ha visto realizada su versión definitiva en 1984 por la Cité des Sciences et de l’Industrie de LA VILLETTE, en París, como punto de partida de la creación del espacio matemáticas en La Villette.
Resumo:
En este artículo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función, y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
Al respecto de las múltiples angustias surgidas por docentes de matemáticas en formación entorno a las dificultades y errores evidenciados por estudiantes de básica segundaria y media en la construcción de pensamiento algebraico, se expone a continuación para el caso de la generalización algebraica los hallazgos logrados desde la investigación que recupera en primera instancia a manera de reseña los referentes teórico conceptuales, las definiciones pertinentes y la clasificación de las dificultades y errores en la educación matemática especialmente en el caso de algebra; de igual manera se detallan características y acuerdos conceptuales entorno a razonamiento, razonamiento algebraico; esta ponencia evidencia los presupuestos e ideales para la educación matemática y la enseñanza del algebra para finalmente establecer la relación y justificación conceptual entre: sistemas de representación (errores); las dificultades (comprensión) y razonamiento algebraico. Con la exposición de ejemplos logrados en las experiencias de aula y analizados producto del trabajo de campo en este estudio, se presenta a manera de propuesta los comentarios, reflexiones y recomendaciones que permitirán al futuro docente de matemáticas diseñar un modelo de competencia formal y cognitivo para entender y actuar en situaciones de la enseñabilidad que se dan en el entorno educativo en especial en relación al razonamiento algebraico.
Resumo:
En este trabajo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
Lo que sigue tiene dos partes bien diferenciadas: una primera que presenta unas notas elaboradas in situ sobre la exposición de E. Lacasta y otra más elaborada, que más que una réplica pretende dar una visión algo diferente sobre el uso de las gráficas cartesianas. La reflexión personal y el concurso de las nuevas tecnologías marcan el enfoque que aquí se describe.
Resumo:
En el siguiente artículo se propone un acercamiento numérico y gráfico al concepto de derivada y de función derivada. Para ello se propone iniciar introduciendo las ideas de diferencias, incrementos y razón de incrementos. El que esto escribe diseño y desarrollo un software de apoyo a la introducción de estas ideas. Para abordar la temática se exponen ideas teóricas, una exposición de lo propuesto en el software y algunos resultados obtenidos.
Resumo:
La intención de este trabajo es presentar algunas teorías y concepciones de la Matemática Educativa y su implementación concreta en cursos de Cálculo Diferencial en una y varias variables. Se expondrán algunas ideas de la Resolución de Problemas, Investigación - Acción, Constructivismo Social (Teoría de Aprendizaje de Vigotsky) y algunos elementos de Ingeniería Didáctica. De todas estas teorias, se mencionan diversos ejemplos, implementados en los cursos de la Universidad de la República (Montevideo, Uruguay), entre los años 1995 y 2002. La exposición estará complementada con la presentación de resultados, y a partir de los mismos se obtendrán conclusiones y se formularán recomendaciones.
Resumo:
El presente trabajo no pretende ser un estudio exhaustivo del método inductivo, sino más bien una exposición divulgativa de dicho método en el que se presentan una serie de ejemplos ilustrativos y curiosidades relacionadas con la inducción. He intentado que los ejemplos tengan una cierta componente lúdica, planteando varios como un reto o desafío al lector, huyendo en todo caso de ejemplos aburridos o en exceso académicos.
Resumo:
Las aportaciones del presente trabajo-informe provienen de las múltiples ocasiones que, en conferencias escuchadas, ponencias asistidas, artículos de revistas y de prensa, conversaciones privadas, Jorge Wagensberg (Director científico de los Museos de Ciencia de la Fundación La Caixa) me (nos) ha tratado de comunicar, tras una experiencia de más de 20 años en el Museo de la Ciencia de Barcelona, cuáles eran las hipótesis de trabajo para construir y desarrollar, en el mismo lugar pero con mucho más espacio, un nuevo Museo de la Ciencia. También de la experiencia generada por una exposición de la Fundación La Caixa “Y después fue... ¡La Forma!” que ha itinerado por múltiples lugares de España (en particular estuvo en el Museo Elder de Las Palmas de Gran Canaria entre Noviembre de 2003 y Febrero de 2004). Y, por último, de la realidad del Museo CosmoCaixa de Barcelona, ya inaugurado el pasado 23 de Septiembre. Todo esto (hipótesis, experiencia y realidad) que Jorge Wagensberg nos ha contado antes y mostrado ahora, es pura museología científica en su forma más moderna y más actual.
Resumo:
Cuantas escalas matemáticas coexisten en una vivienda normal? A esta pregunta la mayoría de ciudadanos responderían con una rotunda respuesta (¡Ninguna!) seguida de una leve sonrisa (En mi casa no entran las matemáticas). El objetivo de este clip es hacer ver la agobiante cantidad de escalas con las cuales todos (incluidos los de letras) convivimos. La exposición tendrá pues forma de carta dirigida al vecino de turno.
Resumo:
El título corresponde a una cita de M. Morse que elogiaba de esa forma la aparición del libro el año 1941. En la contraportada de la edición española se recogen unas palabras de A. Einstein acerca de esta obra: «Una acertada exposición de los conceptos y métodos funda- mentales de la matemática. Constituye una introducción que puede leer sin dificultad el profano, en tanto que al iniciado en matemáticas le ofrece un panorama general de sus métodos y principios básicos». No son las únicas personalidades que hablan de ¿Qué es la matemática? en términos elogiosos. El Courant/Robbíns, como se le suele nombrar coloquialmente, se ha convertido en poco tiempo en un clásico entre las obras de introducción al pensamiento y métodos de las matemáticas.
Resumo:
Este artículo es una breve descripción del proyecto innovación educativa llevada acabo en los colegios públicos de Badajoz, que obtuvo el primer premio Joaquín Sama a la innovación educativa convocado por la consejería de educación y juventud de la junta Extremadura. Culminó con una exposición en ICME de Sevilla en julio de 1996. Se investiga el uso y se recogen unidades e instrumentos de medida tradicionales en Extremadura, estudiando su evolución hasta llegar al sistema métrico decimal, equivalencias, uso actual incluso la distribución geográfica.
Resumo:
Luis Balbuena entrevista a Eusebio Huélamo con motivo de la exposición «Maquinas de calcular» instalada en el casino de la Exposición de Sevilla durante la celebración del lCME-8, formando parte de las exposiciones organizadas por la Federación.