66 resultados para Calidad de la enseñanza
Resumo:
El objeto de investigación del estudio que aquí se presenta es la serie de actores, factores y relaciones entre ellos que, dentro de la institución educativa y su organización en secundaria, determinan la calidad de la formación matemática que logran los estudiantes colombianos. El problema de investigación de PRIME I se concentra en el estudio de procesos asociados con la enseñanza de las matemáticas, antes de que éstos se concreticen en la interacción directa entre profesor y estudiante en el ámbito restringido del salón de clase, es decir, antes de que lleguen a generar un producto en la manera como los estudiantes construyen (o no) su conocimiento matemático. Para dar cuenta de la indagación hecha, este libro se organiza de la siguiente manera. El primer capítulo formula la problemática general que abordó el proyecto. El segundo capítulo muestra cómo se inscribe el espacio de la investigación en el marco de la literatura de la comunidad internacional de educación matemática. El tercero presenta las consideraciones conceptuales que sustentan la aproximación del proyecto a la problemática de la calidad de las matemáticas en secundaria desde la perspectiva de la insitución educativa. El cuarto capítulo expone los principios y diseño metodológicos seguidos en el proceso de investigación. En el quinto capítulo se exponen los resultados generales del proyecto en términos de lo sucedido en el Sistema Institucional de la Educación Matemática (SIEM) en los colegios participantes y de la influencia de la estrategia de desarrollo profesional realizada con ellos en sus sistemas. El último capítulo retoma una de las grandes preguntas iniciales acerca de la pertinencia del modelo del SIEM para abordar la realidad de la enseñanza de las matemáticas en los colegios colombianos y se presenta una reformulación de éste; también presenta las particularidades metodológicas del proceso de reformulación teórica del modelo del SIEM.
Resumo:
El trabajo tiene como objetivo mostrar la forma y los resultados de aplicar tres estrategias cognitivas en la enseñanza de conceptos matemáticos y cómo estas posibilidades de enseñanza mejoran los niveles de razonamiento matemático y por ende las posibilidades de racionalizar problemas de las matemáticas, de otras ciencias y de la vida cotidiana. Presenta el marco teórico teniendo como base para este el cognitivismo como base del desarrollo del pensamiento y los enfoques cubano de la elaboración de conceptos, la enseñanza para la comprensión y la pedagogía conceptual. El razonamiento se ha definido como el desarrollo de los procesos de pensamiento aplicados a problemas matemáticos y los conceptos como construcciones abstractas de los sujetos. Se muestran las tres intervenciones realizadas en la Institución Educativa Normal Superior de Medellín de manera general, en uno de los dos conceptos trabajados. Los resultados permiten determinar que el mejoramiento del razonamiento matemático puede ser mejorado si las formas de trabajo en el aula están acordes con la manera como se define la forma en que los estudiantes aprenden. La ponencia es un acercamiento a un tema de interés para la investigación, el mejoramiento de la calidad en el pensar de nuestros estudiantes.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
La teoría de la probabilidad es una rama importante dentro del desarrollo del pensamiento aleatorio, y en general, de la educación matemática, pues promueve el uso de heurísticas para realizar predicciones y tomar decisiones en torno a una situación del diario vivir. Si bien, en los lineamientos curriculares y en los estándares básicos de calidad se citan conceptos y temáticas en relación con la probabilidad que deben ser abordadas en las aulas de clase, las formas usuales de enseñanza ponen en evidencia el énfasis determinista que recae en la cultura escolar.
Resumo:
Hace algunos meses, los directores de SUMA me encargaron coordinar un trabajo monográfico que recogíera la situación, más o menos actual, de la enseñanza de las matemáticas en Europa, para la escolarización obligatoria y postoblígatoria, en sus diversas opciones, anterior a la universidad.
Resumo:
En este documento abordamos la problemática de la evaluación de programas de formación inicial de profesores de matemáticas de secundaria desde la perspectiva de la calidad. Proponemos un significado para la calidad de un plan de formación a partir de tres dimensiones: relevancia, eficacia y eficiencia. Establecemos una relación entre estas dimensiones y la noción de indicadores de calidad. Ejemplificamos esta relación para el caso de la formación inicial de profesores de matemáticas de secundaria. Presentamos un modelo de formación que se viene utilizando en las universidades de Granada, Almería y Cantabria, y proponemos algunas cuestiones a partir de las cuales es posible formular proyectos de investigación que exploren y caractericen la calidad de planes de formación inicial de profesores de matemáticas de secundaria.
Resumo:
Esta publicación, resultado del “Programa de desarrollo profesional de profesores de matemáticas de Escuelas Normales Superiores”. El libro consta de dos partes: la primera, incluye dos artículos de los tutores del Programa y la segunda, incluye once artículos de grupos de profesores que participaron en el Programa en representación de sendas Escuelas Normales Superiores.
Resumo:
A nivel educativo la noción de derivada se enseña en los cursos regulares de cálculo, pero por lo general, siempre en la forma en que fue definida por Cauchy, lo que implica un procedimiento se hace necesario hacer una factorización. Constantin Caratheodory establece una definición diferente. Esta definición presenta tres aspectos didácticos destacados: Nos muestra que el proceso de acercamiento de las pendientes de las secantes a la pendiente de la tangente es continuo y por tanto, la continuidad es esencial para la derivabilidad, la segunda parte se refiere a la facilidad de la derivación como un proceso de factorización repetitivo y no como cálculo de límites, así como simplicidad en la demostración de teoremas de linealidad, regla de la cadena, algebra de derivadas (suma, producto y cociente), aplicado a funciones polinómicas de valor real y la tercera es que a nivel escolar se generan alternativas en la enseñanza del cálculo a través de la implementación de conceptos nuevos, con el fin de evitar procedimientos tediosos que se tienen con las definiciones tradicionales como la de Cauchy.
Resumo:
Durante el desarrollo de un curso de geometría plana para futuros profesores de matemáticas, profesora y estudiantes conforman una comunidad cuyo propósito es aprender a demostrar. La empresa del curso es construir un sistema axiomático para la geometría plana. Las tareas específicas están asociadas, en su mayoría, a situaciones problema cuya resolución involucra a los estudiantes en una actividad demostrativa en la que la geometría dinámica y la interacción social en el aula, gestionada por la profesora, juegan papeles esenciales. En este documento damos detalles de esta innovación.
Resumo:
Esta propuesta es el resultado de la investigación llevada a cabo en el Núcleo de Pensamiento Aleatorio y los objetivos fueron (1) diseñar una unidad didáctica que (a) abordara la enseñanza de la combinatoria con un fuerte énfasis en la comprensión e (b) involucrara a los estudiantes en la construcción colectiva de los significados mediante el trabajo en grupos colaborativos. (2) contrastar la efectividad de la unidad didáctica en el desempeño de los estudiantes en un test de combinatoria. Para responder a estos objetivos seguimos las recomendaciones de la Teoría de situaciones didácticas de Brousseau (1997) y las recomendaciones para el análisis de datos cuantitativos (Hernández- Sampieri, Fernández-Collado, & Baptista-Lucio, 2008).
Resumo:
Las observaciones en el aula de clase y el trabajo con los estudiantes del grado décimo de la Institución Educativa Normal Superior de Medellín mostraron que existían dificultades en el nivel de los procesos de pensamiento que se utilizaban al resolver los problemas matemáticos o querer aprender un concepto, estas dificultades consistían en la no aplicación del proceso necesario para resolver la tarea planteada fuera ésta el comprender, el realizar, explicar o verificar. Estas observaciones mostraron además que los procesos que manejaban los estudiantes no estaban acordes con los niveles que las teorías cognitivas plantean para su edad, el pensamiento formal propio de esta época aun no emergía y cada problema en el aula era resuelto solamente desde el punto de vista concreto. Teniendo en cuenta esto se concluyó que era necesario mejorar el proceso de razonamiento matemático, es decir llevar al estudiante a que aplique los procesos mentales necesarios para llegar al aprendizaje del concepto, la resolución de problemas y siga avanzando hasta llegar a la argumentación, pero en medio del trabajo cotidiano en el aula, esto es elevar los niveles de razonamiento de los estudiantes y con ello equilibrar el desarrollo de su pensamiento a su edad.
Resumo:
La enseñanza-aprendizaje de los conceptos elementales del Análisis matemático en el nivel del Bachillerato, constituye uno de los puntos de investigación en Didáctica de las Matemáticas más relevantes en la actualidad. Desde marcos teóricos diferentes como la ingeniería didáctica, teoría de obstáculos, la teoría antropológica o el APOS, se han realizado investigaciones sobre la enseñanza-aprendizaje del límite de una función en los niveles de enseñanza de Bachillerato y Universitaria. En este trabajo se presenta una propuesta de investigación, en la que se aplica la teoría de las cuestiones semióticas (TFS), mediante la cual se busca describir, explicar e identificar factores condicionantes de la enseñanza-aprendizaje del límite de una función en un contexto institucional fijado.
Resumo:
Este trabajo realiza, en primer lugar, un estudio de manuales de primero y segundo de Bachillerato-LOGSE, respecto al concepto de integral definida, exponiendo las cuatro dimensiones que se han considerado y un ejemplo de aplicación a un manual de 2º de Bachillerato. En la segunda parte, se hace un estudio comparativo entre los nueve manuales realizados, más representativos de Jaén y provincia, centrándonos en los significados institucionales históricos y en los conflictos semióticos.
Resumo:
En este trabajo establecemos la siguiente hipótesis: el sistema conjeturas-pruebas-refutaciones constituye la lógica del descubrimiento matemático escolar; bien entendido que en las matemáticas de la enseñanza secundaria el énfasis no puede situarse en la frontera móvil que Lakatos (1978) ha señalado en el trabajo de los matemáticos profesionales, esto es, la frontera demostraciones/refutaciones sino más bien en la frontera anterior, conjeturas/demostraciones. Dicho sistema supera didácticamente al enfoque unidimensional de demostración como prueba formalizada, enfoque tradicional del estilo deductivista en la enseñanza de las matemáticas. Esta hipótesis surge del análisis de las dificultades epistemológicas, cognitivas y didácticas del concepto de demostración (en particular, de la demostración por reducción al absurdo) y de la revisión de algunos estudios experimentales sobre la práctica escolar de la demostración.
Resumo:
La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.