3 resultados para genômica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los estudios de asociación genómica (GWAS) llevan consigo un algo costo monetario, y a su vez requieren algoritmos complejos de análisis de información que consumen tiempo y memoria computacional. En este sentido, el objetivo principal de esta tesis es presentar un esquema de genotipado apropiado para poblaciones cruza, junto con un algoritmo eficiente para GWAS de caracteres complejos productivos. Inicialmente, se presenta un esquema de genotipado que maximiza la exactitud de imputación de genotipos en alta densidad (HD) a partir de paneles de baja densidad (LowD), reduciendo el costo de genotipificación. Posteriormete, se propone un algoritmo que facilita identificar regiones genómicas que explican parte de la variabilidad de un carácter, reduciendo la tasa de falsos positivos, el tiempo de cálculo y el requerimiento de memoria RAM. De igual manera, el algoritmo evalúa segmentos candidatos a partir de las posiciones detectadas significativas y calcula la fracción de la varianza aditiva total explicada por cada segmento. Finalmete se presentan estudios de asociación para características de crecimiento y deposición de grasa, empleando el algoritmo propuesto junto con genotipos imputados en HD. La implementación de dicho algoritmo permite identificar regiones significativas relevantes y genes candidatos que explican parte de la variación de los caracteres evaluados. En conclusión, la tesis propone un enfoque estructurado, práctico y eficiente para la realización de GWAS de caracteres complejos aplicado en poblaciones experimentales con fines productivos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La estimación de parámetros genéticos en bovinos lecheros requiere ajustar modelos estadísticos para datos longitudinales (modelos de regresión aleatoria y/o medidas repetidas). Es esencial en regresión aleatoria determinar el orden correcto de los polinomios que describen los coeficientes aleatorios en el tiempo. Tradicionalmente, esta tarea se desarrolló empleando criterios de selección como AIC o BIC, que no siempre logran dilucidar claramente el modelo apropiado. Esta tesis introduce el criterio PAL para la selección del orden del polinomio en modelos de regresión aleatoria, empleando una penalización adaptativa de la función de verosimilitud. Comparativamente, PAL presentó un desempeño superior a AIC y BIC, y su aplicación a datos de producción produjo un modelo parsimonioso, con buena bondad de ajuste y habilidad de predicción. Se abordó además el problema de estimar parámetros genéticos bajo un modelo de medidas repetidas para caracteres que muestran distribución asimétrica. Para evitar desvíos del supuesto de normalidad de los errores, se presentó un modelo alternativo basado en asumir una distribución Normal asimétrica. Se implementó un enfoque bayesiano con muestreo de Gibbs en datos de intervalos entre partos. Incluyendo un parámetro adicional, se obtuvieron estimaciones más precisas de los parámetros genéticos. Estos desarrollos metodológicos estuvieron motivados por los desafíos que enfrenta actualmente el programa de mejoramiento genético de la raza Holstein en Colombia. Entre ellos, figura también el impacto de introducir toros extranjeros provenientes del programa de selección genómica norteamericana. En este marco, se estimó el progreso genético esperado en la población comercial colombiana. Los cálculos reflejaron que utilizar toros genómicos jóvenes se traducirá en una respuesta genética acelerada y en una disminución de la diferencia genética entre el hato comercial y el núcleo del cual provienen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La estimación de parámetros genéticos en bovinos lecheros requiere ajustar modelos estadísticos para datos longitudinales (modelos de regresión aleatoria y/o medidas repetidas). Es esencial en regresión aleatoria determinar el orden correcto de los polinomios que describen los coeficientes aleatorios en el tiempo. Tradicionalmente, esta tarea se desarrolló empleando criterios de selección como AIC o BIC, que no siempre logran dilucidar claramente el modelo apropiado. Esta tesis introduce el criterio PAL para la selección del orden del polinomio en modelos de regresión aleatoria, empleando una penalización adaptativa de la función de verosimilitud. Comparativamente, PAL presentó un desempeño superior a AIC y BIC, y su aplicación a datos de producción produjo un modelo parsimonioso, con buena bondad de ajuste y habilidad de predicción. Se abordó además el problema de estimar parámetros genéticos bajo un modelo de medidas repetidas para caracteres que muestran distribución asimétrica. Para evitar desvíos del supuesto de normalidad de los errores, se presentó un modelo alternativo basado en asumir una distribución Normal asimétrica. Se implementó un enfoque bayesiano con muestreo de Gibbs en datos de intervalos entre partos. Incluyendo un parámetro adicional, se obtuvieron estimaciones más precisas de los parámetros genéticos. Estos desarrollos metodológicos estuvieron motivados por los desafíos que enfrenta actualmente el programa de mejoramiento genético de la raza Holstein en Colombia. Entre ellos, figura también el impacto de introducir toros extranjeros provenientes del programa de selección genómica norteamericana. En este marco, se estimó el progreso genético esperado en la población comercial colombiana. Los cálculos reflejaron que utilizar toros genómicos jóvenes se traducirá en una respuesta genética acelerada y en una disminución de la diferencia genética entre el hato comercial y el núcleo del cual provienen.