2 resultados para gelatin-SDS-PAGE
Resumo:
En plantas forrajeras como la alfalfa, la senescencia foliar produce tanto una pérdida de la biomasa de forraje como una reducción de la calidad del mismo. Una estrategia molecular para retrasar la senescencia mediante la ingeniería genética se basa en la expresión de la secuencia codificante de la isopentenil transferasa (ipt), enzima clave en la biosíntesis de citoquininas. Para lograrlo resulta crítico la utilización de promotores con expresión no constitutiva que permitan la producción sitio-específica y autorregulada de citoquininas. La manipulación de la senescencia constituye un objetivo particularmente atractivo en especies forrajeras. Se transformaron clones de alfalfa con las construcción AtMYB32-ipt, se logró la regeneración de 3 plantas transgénicas, las cuales fueron confirmadas por PCR al amplificar el transgen ipt. La expresión del transgen se confirmó por RT-PCR y a través de la técnica de Southern blot se observó un patrón de inserción múltiple. También se estableció el patrón de expresión de la construcción AtMYB32-gus, la cual se limitó a los tejidos vasculares, con cierta variabilidad de expresión en la parte aérea las plantas. Los fenotipos observados en las plantas AtMYB32-ipt fueron desde plantas normales a plantas que perdieron la dominancia apical con raíces necrosadas en su mayoría. Se evaluó la senescencia foliar a través de bioensayos de hojas de plantas que incorporaron el transgen ipt y plantas que no lo incorporaron, se observó una senescencia foliar retrasada en plantas transgénicas, se cuantificó dicho retraso a través de los contenidos de clorofila a y b, proteínas foliares totales y cambios en el perfil de las proteínas foliares en geles SDS-PAGE (subunidad mayor de Rubisco). Se observó a los 35 días un mayor contenido de clorofila a y b, proteínas foliares y una mayor intensidad de las bandas de la subunidad mayor de Rubisco en las plantas que incorporaron el transgen ipt
Resumo:
El trigo pan [Tritivum aestivum L.]tiene diversos usos en la industria alimenticia debido a las características particulares de la harina y es el ingrediente principal en la elaboración de pan, galletitas, productos de repostería, pastas frescas, etc. La calidad intrínseca de las harinas está influenciada por la cantidad y calidad de proteínas del gluten: Gluteninas de alto [HMW-Gs]y bajo peso molecular [LMW-Gs]y Gliadinas [Gli]. A su vez, la calidad reológica está afectada por factores ambientales y la relación Genotipo x Ambiente. Por lo mencionado, resulta importante conocer los efectos de los patrones proteicos sobre la calidad industrial de trigo pan y comprender la incidencia de la disponibilidad de Nitrógeno y temperaturas elevadas durante el llenado de los granos sobre las fracciones proteicas que componen el gluten y la reolgía de las masas. Se utilizaron proteinogramas [SDS-PAGE, unidimensionales]para la identificación proteica de 74 cultivares argentinos de trigo pan y el test de sedimentación [SDSS]para estimar la fuerza de gluten, como indicador de calidad intrínseca y para ver el efecto del ambiente se utilizaron 26 cultivares de trigo pan sembrados en el mismo sitio y con las mismas condiciones de manejo, en dos años [2008 y 2009]con temperaturas contrastantes durante el llenado de los granos y dos niveles de fertilización nitrogenada. La combinación total de las proteínas del gluten [HMW-Gs+LMWGs+Gli]tuvo más influencia sobre la calidad del gluten que cada fracción proteica en particular. En general, las altas temperaturas aumentaron la cantidad del Gli y la extensibilidad de las masas [L], en tanto que la disponibilidad de N incrementó todos los grupos proteicos, la fuerza [W]y la extensibilidad de la masa. Igualmente, se observó un efecto diferencial de dichos factores sobre los patrones proteicos y la calidad final, según la composición del gluten.