76 resultados para ENSAYOS
Resumo:
p.125-132
Resumo:
p.77-82
Resumo:
La salinización de los suelos es uno de los problemas más graves de degradación en el mundo. En la Argentina hay aproximadamente 85.000.000 ha afectadas por exceso de sales y sodio. La generación de productos orgánicos como residuo de procesos industriales es vista con interés para la recuperación de suelos salino-sódicos. Por otra parte, en producciones extensivas se generan productos orgánicos con potencial de bioremediación como los biosólidos de Feedlot (BF)y los Efluentes de Tambo (BT). El objetivo de esta tesis fue investigar posibles estrategias de rehabilitación de suelos salino-sódicos, a través de la evaluación de la aplicación de enmiendas biológicas (Biosólidos de feedlot y Efluentes de tambo)y químicas (Yeso)con el fin de modificar las propiedades químicas de suelos Natracuoles y mejorar la productividad primaria de gramíneas forrajeras perennes. Para esto, se llevaron a cabo dos ensayos, uno bajo condiciones de invernáculo y otro a campo. En los dos ensayos los tratamientos fueron: testigo (T), aplicación de 8 t de materia seca (MS)ha-1 de BT, aplicación de 8 t MS ha-1 de BF y aplicación de 12 t ha-1 de Y. En invernáculo se evaluó la respuesta en biomasa aérea y radical de Thinopyrum ponticum (agropiro alargado). En el ensayo de campo se evaluó el comportamiento de las enmiendas sobre las propiedades químicas del suelo, utilizándose cobertura vegetal de cebada (Hordeum vulgare L.)y sorgo para silaje (Sorghum sudanense). En invernáculo se comprobó que los BT, los BF y el Y incrementaron la MS aérea y radical de T. ponticum. En el ensayo a campo, se comprobó que los BT, los BF y el Y, no tuvieron efecto alguno sobre las propiedades químicas del suelo. La variabilidad observada en la materia seca (MS)de S. sudanense se explicó en un 49 por ciento por el Porcentaje de Sodio Intercambiable (PSI)del suelo y la profundidad del horizonte A. Se concluye que los BT, los BF y el Y incrementaron la MS aérea y radical de agropiro bajo condiciones de invernáculo, pero a campo, no fueron efectivos en la remediación de la salinidad y la sodicidad del suelo debido a la elevada variabilidad edáfica y a la sequía ocurrida durante el período experimental, condiciones que impidieron la lixiviación de sodio intercambiado por calcio y el exceso de sales solubles, y la consecuente remediación. La falta de respuesta observada a campo fue atribuida, además a la decobertura superficial del suelo por la labranza, particularmente en suelos con delgado horizonte A
Resumo:
p.81-92
Resumo:
p.93-102
Resumo:
La respuesta a la fertilización fosfatada es generalizada en la región pampeana argentina. Los fertilizantes, al ser aplicados al suelo, se disuelven y reaccionan con constituyentes del suelo y con compuestos del fertilizante, dando fosfatos menos solubles. Las fuentes de P utilizadas también determinan las reacciones producidas, lo que podría influir en la disponibilidad de P para las plantas. En Entre Ríos existen sectores dentro de los lotes donde el pH es alcalino y la presencia de carbonato de calcio es importante, pudiendo afectar la disponibilidad de P, tanto en suelos del orden Molisol como Vertisol. Para evaluar el efecto de distintas fuentes de P se realizaron ensayos de campo, invernadero y laboratorio; incluyendo análisis de suelos y mediciones en el cultivo de trigo. En el suelo Vertisol (con alrededor de 10 por ciento de carbonato de calcio)el P extraído con extractantes suaves (P Bray I y Pmia)fue menor con una fuente de reacción alcalina (fosfato di amónico - FDA), correspondiéndose con mayor cantidad de P unido al calcio. En el suelo Molisol (con 3 por ciento de carbonato)las diferencias inducidas por fuentes no fueron significativas al evaluar los valores de Bray I y Mehlich III frente al agregado de P. Sin embargo, al igual que en el suelo Vertisol, el Pmia fue mayor cuando se utilizaron las fuentes súper fosfato triple (SFT)y polifosfato de amonio (PFA)frente a FDA, y esta última presentó mayor P unido al Ca. Para ambos suelos, no se observaron ventajas en el crecimiento, rendimiento y eficiencia agronómica del cultivo de trigo por el uso de alguna fuente en particular; pero el P absorbido por el cultivo, la concentración de P en tejido y la eficiencia de recuperación del P del fertilizante fue mayor cuando se agregó P con las fuentes SFT y PFA. Estos resultados sugieren que la reacción que produce el fertilizante al disolverse en el suelo con alta presencia de carbonato de calcio libre es la que condiciona la cantidad de P que queda en la solución del suelo.
Resumo:
p.289-296
Resumo:
p.45-64
Resumo:
El manejo agronómico del fósforo (P) y del potasio (K) guarda similitudes, en gran medida por su baja movilidad en el suelo. Hay pocos estudios que aborden los procesos que se ven afectados en el cultivo de maíz (Zea mays L.) en situaciones de deficiencias de P, K o de ambos en conjunto. Para determinar los efectos de las deficiencias de estos nutrientes, se establecieron dos ensayos en cultivos de maíz en condiciones de campo, en estaciones de crecimiento consecutivas (2011-2012 y 2012-201393). Los tratamientos consistieron en combinaciones de distintos niveles de fertilización fosfórica y potásica. De manera contraria a lo hipotetizado, la deficiencia de P disminuyó el crecimiento temprano en el ciclo del cultivo, mientras que la deficiencia de K redujo el crecimiento hacia fines del ciclo. La deficiencia de P disminuyó la expansión foliar, con pocos efectos sobre la senescencia. Por el contrario, las deficiencias de K afectaron la senescencia marcadamente, con un menor efecto sobre la expansión foliar. Las deficiencias de P disminuyeron tanto la fracción de la radiación fotosintéticamente activa interceptada (FPAR) como la eficiencia en el uso de la radiación (EUR). En cambio las deficiencias de potasio solo afectaron la FPAR. El índice de cosecha no fue afectado por las deficiencias de P y K. Las deficiencias de P disminuyeron el número de granos en mayor magnitud que el peso de los mismos, mientras que las deficiencias de K afectaron de manera similar ambos co mponentes. Las deficiencias de P no modificaron las relaciones estequiométricas con K o su curva de dilución, y viceversa. Las deficiencias de P cambiaron la curva de dilución de nitrógeno, provocando disminuciones en la concentración de nitrógeno a la misma biomasa aérea total. La interacción entre los efectos de P y de K, sobre el rendimiento y otras variables, fue sinérgica, ya que la respuesta a la adición combinada de los dos nutrientes fue mayor que la suma de las respuestas individuales.
Resumo:
p.1-10
Resumo:
p.185-190
Resumo:
p.173-179
Resumo:
Algunas especies del género Lotus son utilizadas como forrajeras en ambientes de menor aptitud agrícola, las cuales presentan contenidos variables de taninos condensados (TC). La optimización del contenido de TC constituye un objetivo tecnológico de mejora en la calidad forrajera de las leguminosas. L. tenuis es considerada relativamente tolerante a diferentes estreses ambientales, pero no existen reportes relacionados a la optimización de sus niveles de TC. Debido a ello y utilizando el protocolo DMACA-HCl, se cuantificaron los niveles de TC en numerosas poblaciones de L. tenuis, observándose niveles inferiores a los recomendados para leguminosas forrajeras y quedando en evidencia simultáneamente, que no es posible su optimización por selección recurrente. Ello motivó el interés en evaluar la hibridización interespecífica entre L. tenuis y una población seleccionada de L. corniculatus como alternativa tecnológica de mejora. De esta manera, se obtuvo un material con mejores características forrajeras y mayor tolerancia al estrés salino. A su vez, estos materiales resultaron de interés para el estudio de la regulación transcripcional de los genes relacionados a la biosíntesis de TC, observándose que no dependen únicamente de los factores de transcripción y genes que presentan un papel central en otras especies. Por último, en ensayos de inoculación con rizobios, se determinó que los niveles de TC en raíces de Lotus no se encuentran relacionados a la especificidad de la simbiosis y que la formación de nódulos inefectivos determina un incremento en los niveles de estos metabolitos secundarios
Resumo:
La maleza altamisa (Artemisia annua L.)interfiere con el cultivo de soja por competencia y alelopatía, moduladas por estreses bióticos y abióticos (e.g. densidad, herbicida). Los aleloquímicos de altamisa (e.g. artemisinina, aceite esencial)pueden afectar directamente el crecimiento del cultivo o, indirectamente, a través de Bradyrhizobium japonicum (bacteria fijadora de N). Comprender los efectos de las interacciones en el sistema soja-altamisa es agroecológicamente relevante para diseñar prácticas que optimicen la producción y minimicen el uso de insumos. El objetivo de esta tesis fue analizar las interferencias competitivas y alelopáticas entre soja-altamisa y su impacto sobre la nodulación y el rendimiento del cultivo ante cambios en la densidad de plantas y dosis de herbicida. La metodología incluyó ensayos en: (i)parcelas a campo con distintas combinaciones de densidades cultivo-maleza y niveles de alelopatía y de herbicida, (ii)macetas a campo con distintas fuentes de aleloquímicos (biomasa seca y verde de altamisa, artemisinina pura)y suelos (arcilloso y arenoso)y (iii)laboratorio con distintos tipos y niveles de aleloquímicos. (i)Altas densidades de altamisa junto con altos niveles de aleloquímicos en el suelo no redujeron el crecimiento y rendimiento de soja y promovieron la nodulación con o sin aplicación de dosis subletales de herbicida. (ii)El rendimiento fue mayor en presencia de aleloquímicos y sustrato arcilloso. La relación entre el rendimiento y el peso de los nódulos fue positiva y los mayores valores se registraron con biomasa seca de altamisa. (iii)La artemisinina y el aceite esencial provocaron un efecto sinérgico negativo sobre el crecimiento de B. japonicum. El efecto neto de las interacciones competitivas, alelopáticas y de mutualismo generadas entre soja y altamisa dependen no solo del ambiente explorado sino del nivel de organización estudiado. En condiciones de campo (parcelas y macetas), la interacción alelopática fue positiva o neutra, mientras que en laboratorio resultó negativa.
Resumo:
p.17-23