3 resultados para wildlife damage management
em Ecology and Society
Resumo:
Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.
Resumo:
According to the U.S. National Environmental Policy Act of 1969 (NEPA), federal action to manipulate habitat for species conservation requires an environmental impact statement, which should integrate natural, physical, economic, and social sciences in planning and decision making. Nonetheless, most impact assessments focus disproportionately on physical or ecological impacts rather than integrating ecological and socioeconomic components. We developed a participatory social-ecological impact assessment (SEIA) that addresses the requirements of NEPA and integrates social and ecological concepts for impact assessments. We cooperated with the Bureau of Land Management in Idaho, USA on a project designed to restore habitat for the Greater Sage-Grouse (Centrocercus urophasianus). We employed questionnaires, workshop dialogue, and participatory mapping exercises with stakeholders to identify potential environmental changes and subsequent impacts expected to result from the removal of western juniper (Juniperus occidentalis). Via questionnaires and workshop dialogue, stakeholders identified 46 environmental changes and associated positive or negative impacts to people and communities in Owyhee County, Idaho. Results of the participatory mapping exercises showed that the spatial distribution of social, economic, and ecological values throughout Owyhee County are highly associated with the two main watersheds, wilderness areas, and the historic town of Silver City. Altogether, the SEIA process revealed that perceptions of project scale varied among participants, highlighting the need for specificity about spatial and temporal scales. Overall, the SEIA generated substantial information concerning potential impacts associated with habitat treatments for Greater Sage-Grouse. The SEIA is transferable to other land management and conservation contexts because it supports holistic understanding and framing of connections between humans and ecosystems. By applying this SEIA framework, land managers and affected people have an opportunity to fulfill NEPA requirements and develop more comprehensive management plans that better reflect the linkages of social-ecological systems.
Resumo:
Floodplains pose challenges to managers of conservation lands because of constantly changing interactions with their rivers. Although scientific knowledge and understanding of the dynamics and drivers of river-floodplain systems can provide guidance to floodplain managers, the scientific process often occurs in isolation from management. Further, communication barriers between scientists and managers can be obstacles to appropriate application of scientific knowledge. With the coproduction of science in mind, our objectives were the following: (1) to document management priorities of floodplain conservation lands, and (2) identify science needs required to better manage the identified management priorities under nonstationary conditions, i.e., climate change, through stakeholder queries and interactions. We conducted an online survey with 80 resource managers of floodplain conservation lands along the Upper and Middle Mississippi River and Lower Missouri River, USA, to evaluate management priority, management intensity, and available scientific information for management objectives and conservation targets. Management objectives with the least information available relative to priority included controlling invasive species, maintaining respectful relationships with neighbors, and managing native, nongame species. Conservation targets with the least information available to manage relative to management priority included pollinators, marsh birds, reptiles, and shore birds. A follow-up workshop and survey focused on clarifying science needs to achieve management objectives under nonstationary conditions. Managers agreed that metrics of inundation, including depth and extent of inundation, and frequency, duration, and timing of inundation would be the most useful metrics for management of floodplain conservation lands with multiple objectives. This assessment provides guidance for developing relevant and accessible science products to inform management of highly dynamic floodplain environments. Although the problems facing managers of these lands are complex, products focused on a small suite of inundation metrics were determined to be the most useful to guide the decision making process.