5 resultados para science center

em Ecology and Society


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Indigenous Arctic and Subarctic communities currently are facing a myriad of social and environmental changes. In response to these changes, studies concerning indigenous knowledge (IK) and climate change vulnerability, resiliency, and adaptation have increased dramatically in recent years. Risks to lives and livelihoods are often the focus of adaptation research; however, the cultural dimensions of climate change are equally important because cultural dimensions inform perceptions of risk. Furthermore, many Arctic and Subarctic IK climate change studies document observations of change and knowledge of the elders and older generations in a community, but few include the perspectives of the younger population. These observations by elders and older generations form a historical baseline record of weather and climate observations in these regions. However, many indigenous Arctic and Subarctic communities are composed of primarily younger residents. We focused on the differences in the cultural dimensions of climate change found between young adults and elders. We outlined the findings from interviews conducted in four indigenous communities in Subarctic Alaska. The findings revealed that (1) intergenerational observations of change were common among interview participants in all four communities, (2) older generations observed more overall change than younger generations interviewed by us, and (3) how change was perceived varied between generations. We defined “observations” as the specific examples of environmental and weather change that were described, whereas “perceptions” referred to the manner in which these observations of change were understood and contextualized by the interview participants. Understanding the differences in generational observations and perceptions of change are key issues in the development of climate change adaptation strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The International Long-Term Ecological Research (ILTER) network comprises > 600 scientific groups conducting site-based research within 40 countries. Its mission includes improving the understanding of global ecosystems and informs solutions to current and future environmental problems at the global scales. The ILTER network covers a wide range of social-ecological conditions and is aligned with the Programme on Ecosystem Change and Society (PECS) goals and approach. Our aim is to examine and develop the conceptual basis for proposed collaboration between ILTER and PECS. We describe how a coordinated effort of several contrasting LTER site-based research groups contributes to the understanding of how policies and technologies drive either toward or away from the sustainable delivery of ecosystem services. This effort is based on three tenets: transdisciplinary research; cross-scale interactions and subsequent dynamics; and an ecological stewardship orientation. The overarching goal is to design management practices taking into account trade-offs between using and conserving ecosystems toward more sustainable solutions. To that end, we propose a conceptual approach linking ecosystem integrity, ecosystem services, and stakeholder well-being, and as a way to analyze trade-offs among ecosystem services inherent in diverse management options. We also outline our methodological approach that includes: (i) monitoring and synthesis activities following spatial and temporal trends and changes on each site and by documenting cross-scale interactions; (ii) developing analytical tools for integration; (iii) promoting trans-site comparison; and (iv) developing conceptual tools to design adequate policies and management interventions to deal with trade-offs. Finally, we highlight the heterogeneity in the social-ecological setting encountered in a subset of 15 ILTER sites. These study cases are diverse enough to provide a broad cross-section of contrasting ecosystems with different policy and management drivers of ecosystem conversion; distinct trends of biodiversity change; different stakeholders’ preferences for ecosystem services; and diverse components of well-being issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human-environment connections are the subject of much study, and the details of those connections are crucial factors in effective environmental management. In a large, interdisciplinary study of the eastern Bering Sea ecosystem involving disciplines from physical oceanography to anthropology, one of the research teams examined commercial fisheries and another looked at subsistence harvests by Alaska Natives. Commercial fisheries and subsistence harvests are extensive, demonstrating strong connections between the ecosystem and the humans who use it. At the same time, however, both research teams concluded that the influence of ecosystem conditions on the outcomes of human activities was weaker than anticipated. Likely explanations of this apparently loose coupling include the ability of fishers and hunters to adjust to variable conditions, and the role of social systems and management in moderating the direct effects of changes in the ecosystem. We propose a new conceptual model for future studies that incorporates a greater range of social factors and their dynamics, in addition to similarly detailed examinations of the ecosystem itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective natural resource policy depends on knowing what is needed to sustain a resource and building the capacity to identify, develop, and implement flexible policies. This retrospective case study applies resilience concepts to a 16-year citizen science program and vernal pool regulatory development process in Maine, USA. We describe how citizen science improved adaptive capacities for innovative and effective policies to regulate vernal pools. We identified two core program elements that allowed people to act within narrow windows of opportunity for policy transformation, including (1) the simultaneous generation of useful, credible scientific knowledge and construction of networks among diverse institutions, and (2) the formation of diverse leadership that promoted individual and collective abilities to identify problems and propose policy solutions. If citizen science program leaders want to promote social-ecological systems resilience and natural resource policies as outcomes, we recommend they create a system for internal project evaluation, publish scientific studies using citizen science data, pursue resources for program sustainability, and plan for leadership diversity and informal networks to foster adaptive governance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Floodplains pose challenges to managers of conservation lands because of constantly changing interactions with their rivers. Although scientific knowledge and understanding of the dynamics and drivers of river-floodplain systems can provide guidance to floodplain managers, the scientific process often occurs in isolation from management. Further, communication barriers between scientists and managers can be obstacles to appropriate application of scientific knowledge. With the coproduction of science in mind, our objectives were the following: (1) to document management priorities of floodplain conservation lands, and (2) identify science needs required to better manage the identified management priorities under nonstationary conditions, i.e., climate change, through stakeholder queries and interactions. We conducted an online survey with 80 resource managers of floodplain conservation lands along the Upper and Middle Mississippi River and Lower Missouri River, USA, to evaluate management priority, management intensity, and available scientific information for management objectives and conservation targets. Management objectives with the least information available relative to priority included controlling invasive species, maintaining respectful relationships with neighbors, and managing native, nongame species. Conservation targets with the least information available to manage relative to management priority included pollinators, marsh birds, reptiles, and shore birds. A follow-up workshop and survey focused on clarifying science needs to achieve management objectives under nonstationary conditions. Managers agreed that metrics of inundation, including depth and extent of inundation, and frequency, duration, and timing of inundation would be the most useful metrics for management of floodplain conservation lands with multiple objectives. This assessment provides guidance for developing relevant and accessible science products to inform management of highly dynamic floodplain environments. Although the problems facing managers of these lands are complex, products focused on a small suite of inundation metrics were determined to be the most useful to guide the decision making process.