3 resultados para environmental management strategies
em Ecology and Society
Resumo:
There is increasing advocacy for inclusive community-based approaches to environmental management, and growing evidence that involving communities improves the sustainability of social-ecological systems. Most community-based approaches rely on partnerships and knowledge exchange between communities, civil society organizations, and professionals such as practitioners and/or scientists. However, few models have actively integrated more horizontal knowledge exchange from community to community. We reflect on the transferability of community owned solutions between indigenous communities by exploring challenges and achievements of community peer-to-peer knowledge exchange as a way of empowering communities to face up to local environmental and social challenges. Using participatory visual methods, indigenous communities of the North Rupununi (Guyana) identified and documented their community owned solutions through films and photostories. Indigenous researchers from this community then shared their solutions with six other communities that faced similar challenges within Guyana, Suriname, Venezuela, Colombia, French Guiana, and Brazil. They were supported by in-country civil society organizations and academics. We analyzed the impact of the knowledge exchange through interviews, field reports, and observations. Our results show that indigenous community members were significantly more receptive to solutions emerging from, and communicated by, other indigenous peoples, and that this approach was a significant motivating force for galvanizing communities to make changes in their community. We identified a range of enabling factors, such as building capacity for a shared conceptual and technical understanding, that strengthens the exchange between communities and contributes to a lasting impact. With national and international policy-makers mobilizing significant financial resources for biodiversity conservation and climate change mitigation, we argue that the promotion of community owned solutions through community peer-to-peer exchange may deliver more long-lasting, socially and ecologically integrated, and investment-effective strategies compared to top-down, expert led, and/or foreign-led initiatives.
Resumo:
Indigenous communities have actively managed their environments for millennia using a diversity of resource use and conservation strategies. Clam gardens, ancient rock-walled intertidal beach terraces, represent one example of an early mariculture technology that may have been used to improve food security and confer resilience to coupled human-ocean systems. We surveyed a coastal landscape for evidence of past resource use and management to gain insight into ancient resource stewardship practices on the central coast of British Columbia, Canada. We found that clam gardens are embedded within a diverse portfolio of resource use and management strategies and were likely one component of a larger, complex resource management system. We compared clam diversity, density, recruitment, and biomass in three clam gardens and three unmodified nonwalled beaches. Evidence suggests that butter clams (Saxidomus gigantea) had 1.96 times the biomass and 2.44 times the density in clam gardens relative to unmodified beaches. This was due to a reduction in beach slope and thus an increase in the optimal tidal range where clams grow and survive best. The most pronounced differences in butter clam density between nonwalled beaches and clam gardens were found at high tidal elevations at the top of the beach. Finally, clam recruits (0.5-2 mm in length) tended to be greater in clam gardens compared to nonwalled beaches and may be attributed to the addition of shell hash by ancient people, which remains on the landscape today. As part of a broader social-ecological system, clam garden sites were among several modifications made by humans that collectively may have conferred resilience to past communities by providing reliable and diverse access to food resources.
Resumo:
Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.