5 resultados para common pool resource
em Ecology and Society
Resumo:
This ethnographic case study of serege-commons, communal pasture and forest in Muhur, Ethiopia, demonstrates the socially complex nature of the common property resource (CPR) system, including the factors behind its resilience and sustained operation. It reveals the multifaceted and interacting local processes that maintain the commons in the face of political economic processes that challenge common property management. The study shows how CPR use, crop cultivation, alternative livelihood strategies, out-migration, collective herding practices, management practices, and alternative sources of compliance interact, and these interacting processes reinforce each other and maintain a resilient CPR system. This study argues that there is not one single cause for sustainable CPR regimes. Instead, the resilience and sustained operation of the CPR system are due to a mix of interdependent elements and inter-reinforcing linkages related to CPR operations, and their interactions within complex social-ecological systems.
Resumo:
Groundwater is a common-pool resource that is subject to depletion in many places around the world as a result of increased use of irrigation and water-demanding cash crops. Where state capacity to control groundwater use is limited, collective action is important to increase recharge and restrict highly water-consumptive crops. We present results of field experiments in hard rock areas of Andhra Pradesh, India, to examine factors affecting groundwater use. Two nongovernmental organizations (NGOs) ran the games in communities where they were working to improve watershed and water management. Results indicate that, when the links between crop choice and groundwater depletion is made explicit, farmers can act cooperatively to address this problem. Longer NGO involvement in the villages was associated with more cooperative outcomes in the games. Individuals with more education and higher perceived community social capital played more cooperatively, but neither gender nor method of payment had a significantly effect on individual behavior. When participants could repeat the game with communication, similar crop choice patterns were observed. The games provided an entry point for discussion on the understanding of communities of the interconnectedness of groundwater use and crop choice.
Resumo:
Local communities collectively managing common pool resources can play an important role in sustainable management, but they often lack the skills and context-specific tools required for such management. The complex dynamics of social-ecological systems (SES), the need for management capacities, and communities’ limited empowerment and participation skills present challenges for community-based natural resource management (CBNRM) strategies. We analyzed the applicability of prospective structural analysis (PSA), a strategic foresight tool, to support decision making and to foster sustainable management and capacity building in CBNRM contexts and the modifications necessary to use the tool in such contexts. By testing PSA in three SES in Colombia, Mexico, and Argentina, we gathered information regarding the potential of this tool and its adaptation requirements. The results suggest that the tool can be adapted to these contexts and contribute to fostering sustainable management and capacity building. It helped identify the systems’ dynamics, thus increasing the communities’ knowledge about their SES and informing the decision-making process. Additionally, it drove a learning process that both fostered empowerment and built participation skills. The process demanded both time and effort, and required external monitoring and facilitation, but community members could be trained to master it. Thus, we suggest that the PSA technique has the potential to strengthen CBNRM and that other initiatives could use it, but they must be aware of these requirements.
Resumo:
Effective natural resource policy depends on knowing what is needed to sustain a resource and building the capacity to identify, develop, and implement flexible policies. This retrospective case study applies resilience concepts to a 16-year citizen science program and vernal pool regulatory development process in Maine, USA. We describe how citizen science improved adaptive capacities for innovative and effective policies to regulate vernal pools. We identified two core program elements that allowed people to act within narrow windows of opportunity for policy transformation, including (1) the simultaneous generation of useful, credible scientific knowledge and construction of networks among diverse institutions, and (2) the formation of diverse leadership that promoted individual and collective abilities to identify problems and propose policy solutions. If citizen science program leaders want to promote social-ecological systems resilience and natural resource policies as outcomes, we recommend they create a system for internal project evaluation, publish scientific studies using citizen science data, pursue resources for program sustainability, and plan for leadership diversity and informal networks to foster adaptive governance.
Resumo:
Emerging infectious diseases are a growing concern in wildlife conservation. Documenting outbreak patterns and determining the ecological drivers of transmission risk are fundamental to predicting disease spread and assessing potential impacts on population viability. However, evaluating disease in wildlife populations requires expansive surveillance networks that often do not exist in remote and developing areas. Here, we describe the results of a community-based research initiative conducted in collaboration with indigenous harvesters, the Inuit, in response to a new series of Avian Cholera outbreaks affecting Common Eiders (Somateria mollissima) and other comingling species in the Canadian Arctic. Avian Cholera is a virulent disease of birds caused by the bacterium Pasteurella multocida. Common Eiders are a valuable subsistence resource for Inuit, who hunt the birds for meat and visit breeding colonies during the summer to collect eggs and feather down for use in clothing and blankets. We compiled the observations of harvesters about the growing epidemic and with their assistance undertook field investigation of 131 colonies distributed over >1200 km of coastline in the affected region. Thirteen locations were identified where Avian Cholera outbreaks have occurred since 2004. Mortality rates ranged from 1% to 43% of the local breeding population at these locations. Using a species-habitat model (Maxent), we determined that the distribution of outbreak events has not been random within the study area and that colony size, vegetation cover, and a measure of host crowding in shared wetlands were significantly correlated to outbreak risk. In addition, outbreak locations have been spatially structured with respect to hypothesized introduction foci and clustered along the migration corridor linking Arctic breeding areas with wintering areas in Atlantic Canada. At present, Avian Cholera remains a localized threat to Common Eider populations in the Arctic; however expanded, community-based surveillance will be required to track disease spread.