4 resultados para Wetlands
em Ecology and Society
Resumo:
There is increasing advocacy for inclusive community-based approaches to environmental management, and growing evidence that involving communities improves the sustainability of social-ecological systems. Most community-based approaches rely on partnerships and knowledge exchange between communities, civil society organizations, and professionals such as practitioners and/or scientists. However, few models have actively integrated more horizontal knowledge exchange from community to community. We reflect on the transferability of community owned solutions between indigenous communities by exploring challenges and achievements of community peer-to-peer knowledge exchange as a way of empowering communities to face up to local environmental and social challenges. Using participatory visual methods, indigenous communities of the North Rupununi (Guyana) identified and documented their community owned solutions through films and photostories. Indigenous researchers from this community then shared their solutions with six other communities that faced similar challenges within Guyana, Suriname, Venezuela, Colombia, French Guiana, and Brazil. They were supported by in-country civil society organizations and academics. We analyzed the impact of the knowledge exchange through interviews, field reports, and observations. Our results show that indigenous community members were significantly more receptive to solutions emerging from, and communicated by, other indigenous peoples, and that this approach was a significant motivating force for galvanizing communities to make changes in their community. We identified a range of enabling factors, such as building capacity for a shared conceptual and technical understanding, that strengthens the exchange between communities and contributes to a lasting impact. With national and international policy-makers mobilizing significant financial resources for biodiversity conservation and climate change mitigation, we argue that the promotion of community owned solutions through community peer-to-peer exchange may deliver more long-lasting, socially and ecologically integrated, and investment-effective strategies compared to top-down, expert led, and/or foreign-led initiatives.
Resumo:
Tackling societal and environmental challenges requires new approaches that connect top-down global oversight with bottom-up subnational knowledge. We present a novel framework for participatory development of spatially explicit scenarios at national scale that model socioeconomic and environmental dynamics by reconciling local stakeholder perspectives and national spatial data. We illustrate results generated by this approach and evaluate its potential to contribute to a greater understanding of the relationship between development pathways and sustainability. Using the lens of land use and land cover changes, and engaging 240 stakeholders representing subnational (seven forest management zones) and the national level, we applied the framework to assess alternative development strategies in the Tanzania mainland to the year 2025, under either a business as usual or a green development scenario. In the business as usual scenario, no productivity gain is expected, cultivated land expands by ~ 2% per year (up to 88,808 km²), with large impacts on woodlands and wetlands. Despite legal protection, encroachment of natural forest occurs along reserve borders. Additional wood demand leads to degradation, i.e., loss of tree cover and biomass, up to 80,426 km² of wooded land. The alternative green economy scenario envisages decreasing degradation and deforestation with increasing productivity (+10%) and implementation of payment for ecosystem service schemes. In this scenario, cropland expands by 44,132 km² and the additional degradation is limited to 35,778 km². This scenario development framework captures perspectives and knowledge across a diverse range of stakeholders and regions. Although further effort is required to extend its applicability, improve users’ equity, and reduce costs the resulting spatial outputs can be used to inform national level planning and policy implementation associated with sustainable development, especially the REDD+ climate mitigation strategy.
Resumo:
At a global scale, aquatic ecosystems are being altered by human activities at a greater rate than at any other time in history. In recent years, grassroots efforts have generated interest in the restoration of degraded or destroyed aquatic habitats, especially small wetlands and streams where such projects are feasible with local resources. We present ecological management lessons learned from 17 years of monitoring the fish community response to the channel relocation and reach-level restoration of Juday Creek, a 3rd-order tributary of the St. Joseph River in Indiana, USA. The project was designed to increase habitat complexity, reverse the effects of accumulated fine sediment (< 2 mm diameter), and mitigate for the impacts of a new golf course development. The 1997 restoration consisted of new channel construction within two reaches of a 1.2-km section of Juday Creek that also contained two control reaches. A primary social goal of the golf course development and stream restoration was to avoid harm to the non-native brown trout fishery, as symbolic of community concerns for the watershed. Our long-term monitoring effort revealed that, although fine sediment increased over time in the restored reaches, habitat conditions have promoted the resurgence of native fish species. Since restoration, the fish assemblage has shifted from non-native Salmonidae (brown trout, rainbow trout) to native Centrarchidae (rock bass, largemouth bass, smallmouth bass). In addition, native, nongame species have remained stable or have increased in population abundance (e.g., Johnny darter, mottled sculpin). The results of this study demonstrate the value of learning from a restoration project to adjust management decisions that enhance environmental quality.
Resumo:
Emerging infectious diseases are a growing concern in wildlife conservation. Documenting outbreak patterns and determining the ecological drivers of transmission risk are fundamental to predicting disease spread and assessing potential impacts on population viability. However, evaluating disease in wildlife populations requires expansive surveillance networks that often do not exist in remote and developing areas. Here, we describe the results of a community-based research initiative conducted in collaboration with indigenous harvesters, the Inuit, in response to a new series of Avian Cholera outbreaks affecting Common Eiders (Somateria mollissima) and other comingling species in the Canadian Arctic. Avian Cholera is a virulent disease of birds caused by the bacterium Pasteurella multocida. Common Eiders are a valuable subsistence resource for Inuit, who hunt the birds for meat and visit breeding colonies during the summer to collect eggs and feather down for use in clothing and blankets. We compiled the observations of harvesters about the growing epidemic and with their assistance undertook field investigation of 131 colonies distributed over >1200 km of coastline in the affected region. Thirteen locations were identified where Avian Cholera outbreaks have occurred since 2004. Mortality rates ranged from 1% to 43% of the local breeding population at these locations. Using a species-habitat model (Maxent), we determined that the distribution of outbreak events has not been random within the study area and that colony size, vegetation cover, and a measure of host crowding in shared wetlands were significantly correlated to outbreak risk. In addition, outbreak locations have been spatially structured with respect to hypothesized introduction foci and clustered along the migration corridor linking Arctic breeding areas with wintering areas in Atlantic Canada. At present, Avian Cholera remains a localized threat to Common Eider populations in the Arctic; however expanded, community-based surveillance will be required to track disease spread.